Mutant p53 proteins are expressed at high frequency in human tumors and are associated with poor clinical prognosis and resistance to chemotherapeutic treatments. Here we show that mutant p53 proteins downregulate micro-RNA (miR)-223 expression in breast and colon cancer cell lines. Mutant p53 binds the miR-223 promoter and reduces its transcriptional activity. This requires the transcriptional repressor ZEB-1. We found that miR-223 exogenous expression sensitizes breast and colon cancer cell lines expressing mutant p53 to treatment with DNA-damaging drugs. Among the putative miR-223 targets, we focused on stathmin-1 (STMN-1), an oncoprotein known to confer resistance to chemotherapeutic drugs associated with poor clinical prognosis. Mutant p53 silencing or miR-223 exogenous expression lowers the levels of STMN-1 and knockdown of STMN-1 by small interfering RNA increases cell death of mutant p53-expressing cell lines. On the basis of these findings, we propose that one of the pathways affected by mutant p53 to increase cellular resistance to chemotherapeutic agents involves miR-223 downregulation and the consequent upregulation of STMN-1.
Histones mediate dynamic packaging of nuclear DNA in chromatin, a process that is precisely controlled to guarantee efficient compaction of the genome and proper chromosomal segregation during cell division and to accomplish DNA replication, transcription, and repair. Due to the important structural and regulatory roles played by histones, it is not surprising that histone functional dysregulation or aberrant levels of histones can have severe consequences for multiple cellular processes and ultimately might affect development or contribute to cell transformation. Recently, germline frameshift mutations involving the C-terminal tail of HIST1H1E, which is a widely expressed member of the linker histone family and facilitates higher-order chromatin folding, have been causally linked to an as-yet poorly defined syndrome that includes intellectual disability. We report that these mutations result in stable proteins that reside in the nucleus, bind to chromatin, disrupt proper compaction of DNA, and are associated with a specific methylation pattern. Cells expressing these mutant proteins have a dramatically reduced proliferation rate and competence, hardly enter into the S phase, and undergo accelerated senescence. Remarkably, clinical assessment of a relatively large cohort of subjects sharing these mutations revealed a premature aging phenotype as a previously unrecognized feature of the disorder. Our findings identify a direct link between aberrant chromatin remodeling, cellular senescence, and accelerated aging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.