Melatonin is known to exert antitumour activity in several types of human cancers, but the underlying mechanisms as well as the efficacy of different doses of melatonin are not well defined. Here, we test the hypothesis whether melatonin in the nanomolar range is effective in exerting antitumour activity in vivo and examine the correlation with the hypoxia signalling mechanism, which may be a major molecular mechanism by which melatonin antagonizes cancer. To test this hypothesis, LNCaP human prostate cancer cells were xenografted into seven-wk-old Foxn1nu/nu male mice that were treated with melatonin (18 i.p. injections of 1 mg/kg in 41 days). Saline-treated mice served as control. We found that the melatonin levels in plasma and xenografted tissue were 4× and 60× higher, respectively, than in control samples. Melatonin tended to restore the redox imbalance by increasing expression of Nrf2. As part of the phenotypic response to these perturbations, xenograft microvessel density was less in melatonin-treated animals, indicative of lower angiogenesis, and the xenograft growth rate was slower (P < 0.0001). These changes were accompanied by a reduced expression of Ki67, elevated expression of HIF-1α and increased phosphorylation of Akt in melatonin than saline-treated mice. We conclude that the beneficial effect of melatonin in reducing cancer growth in vivo was evident at melatonin plasma levels as low as 4 nm and was associated with decreased angiogenesis. Higher HIF-1α expression in xenograft tissue indicates that the antitumour effect cannot be due to a postulated antihypoxic effect, but may stem from lower angiogenesis potential.
In this study, the aim was to test the biochemical effects of melatonin supplementation in Intensive Care Unit (ICU) patients, since their blood levels are decreased. Sixty-four patients were enrolled in the study. From the evening of the 3rd ICU day, patients were randomized to receive oral melatonin (3 mg, group M) or placebo (group P) twice daily, at 20:00 and 24:00, until discharged. Blood was taken (at 00:00 and 14:00), on the 3rd ICU day to assess basal nocturnal melatonin values, and then during the treatment period on the 4th and 8th ICU days. Melatonin, total antioxidant capacity, and oxidative stress were evaluated in serum. Melatonin circadian rhythm before treatment was similar in the two groups, with a partial preservation of the cycle. Four hours from the 1st administration (4th ICU day, 00:00), melatonin levels increased to 2514 (982.3; 7148) pg·mL−1 in group M vs. 20.3 (14.7; 62.3) pg·mL−1 in group P (p < 0.001). After five treatment days (8th ICU day), melatonin absorption showed a repetitive trend in group M, while in group P nocturnal secretion (00:00) was impaired: 20 (11.5; 34.5) pg·mL−1 vs. 33.8 (25.0; 62.2) on the 3rd day (p = 0.029). Immediately from the beginning of treatment, the total antioxidant capacity was significantly higher in melatonin treated subjects at 00:00; a significant correlation was found between total antioxidant capacity and blood melatonin values (ρ = 0.328; p < 0.001). The proposed enteral administration protocol was adequate, even in the early phase, to enhance melatonin blood levels and to protect the patients from oxidative stress. The antioxidant effect of melatonin could play a meaningful role in the care and well-being of these patients.
Melatonin, a pineal gland hormone, exerts oncostatic activity in several types of human cancer, including prostate, the most common neoplasia and the third most frequent cause of male cancer death in the developed world. The growth of androgen-sensitive LNCaP prostate cancer cells in mice is inhibited by 3 mg/kg/week melatonin (0.09 mg/mouse/week) delivered by i.p. injections, which is equivalent to a dose of 210 mg/week in humans. The aim of this study is to test an alternative noninvasive delivery route based on transdermal administration of melatonin onto the tumor area followed by cryopass-laser treatment. Two groups of immunodepressed mice were studied, one (n ¼ 10) subjected to 18 cryopass-laser therapy sessions and one (n ¼ 10) subjected to the same treatment without melatonin. These groups were compared with mice treated with i.p.-administered melatonin or vehicle with the same time schedule. We found that cryopass-laser treatment is as efficient as i.p. injections in reducing the growth of LNCaP tumor cells, affecting plasma melatonin and redox balance. Furthermore, both delivery routes share the same effects on the involved biochemical pathway driven by hypoxia-inducible factor 1a. However, cryopass-laser, as used in the present experimental setup, is less efficient than i.p delivery route in increasing the melatonin content and Nrf2 expression in the tumor mass. We conclude that cryopass-laser treatment may have impact for melatonin-based therapy of prostate cancer, by delivering drugs transdermally without causing pain and targeting directly on the site of interest, thereby potentially making long-term treatments more sustainable.ARTICLE HISTORY
Summary The plasma concentration of asymmetrical dimethylarginine (ADMA), an inhibitor of nitric oxide synthase, has been linked to endothelial dysfunction. We investigated the relation between ADMA, symmetric dimethylarginine (SDMA) and L‐arginine concentrations and erectile dysfunction. We compared plasma levels of ADMA, SDMA and L‐arginine in 61 men in good health with erectile dysfunction of arteriogenic and non‐arteriogenic origin. Diagnosis of erectile dysfunction was based on the International Index of Erectile Function Score and its aetiology was classified with penile echo‐colour‐Doppler in basal condition and after intracavernous injection of prostaglandin E1. The ADMA and SDMA concentrations were significantly higher in men with arteriogenic erectile dysfunction compared with those with erectile dysfunction of non‐arteriogenic origin (p < 0.05) and the concentrations in both subgroups were significantly higher than in controls (p < 0.001). There was a negative correlation between ADMA and International Index of Erectile Function Score only in arteriogenic erectile dysfunction subgroup. L‐arginine did not differ significantly neither between the two erectile dysfunction subgroups (p > 0.05) nor between each of the two erectile dysfunction subgroups and controls (p > 0.05). The L‐arginine/ADMA and the L‐arginine/SDMA ratios in arteriogenic erectile dysfunction subgroups were significantly lower than both in controls (p < 0.05) and in non‐arteriogenic erectile dysfunction patients (p < 0.05); the two ratios in non‐arteriogenic erectile dysfunction patients did not differ from those in the controls (p > 0.05). We conclude that ADMA and SDMA concentrations are significantly higher and L‐arginine/ADMA ratio lower in patients who have arteriogenic erectile dysfunction compared with both patients with non‐arteriogenic erectile dysfunction and controls. The negative correlation between ADMA and severity of erectile dysfunction is present only in patients with arteriogenic erectile dysfunction. This study supports the importance to always distinguish arteriogenic from non‐arteriogenic erectile dysfunction patients to study the complicate erectogenic mechanisms that lead to erectile dysfunction and also to provide potential therapeutic agents for patients with arteriogenic erectile dysfunction.
have contributed equally to the present paper.Precis: Melatonin encapsulated in solid lipid nanoparticles enterally administered in critically ill patients has useful pharmacokinetics; transdermal microemulsion has concentration-time profile more similar to endogenous one. AbstractBackground and objectives: Critically ill patients present reduced endogenous melatonin blood levels, and they might benefit from its exogenous supplementation. The aim of this research was to evaluate the feasibility of different routes of administration and drug formulations of melatonin. The efficiency of absorption was assessed as well as the adequacy in achieving and maintaining the physiological nocturnal blood peak.Methods: Twenty-one high-risk critically ill patients were randomly assigned to receive melatonin either: (a) per os, as a standard tablet (ST-OS), (b) per os, as a suspension in solid lipid nanoparticles (SLN-OS) or c) transdermal (TD), by applying a jellified melatonin microemulsion (μE) on the skin (μE-TD). SLN-OS and μE-TD were lipidbased colloidal systems. The endogenous melatonin blood values were observed for 24 hours; subsequently, melatonin 3 mg was administered and pharmacokinetics was studied for 24 hours further. Results:In both groups that received ST-OS and SLN-OS, the median time-topeak blood concentration was 0.5 hours; however, the area under the curve (AUC) after administration of SLN-OS was significantly higher than after ST-OS (157386 [65732-193653] vs 44441 [22319-90705] pg/mL*hours, P = 0.048). μE-TD presented a delayed time-to-peak blood concentration (4 hours), a lower bioavailability (AUC: 3142 [1344-14573] pg/mL*hours) and reached pharmacological peak concentration (388 [132-1583] pg/mL).Conclusions: SLN-melatonin enterally administered offers favourable pharmacokinetics in critically ill patients, with higher bioavailability with respect to the standard formulation; μE-TD provided effective pharmacological blood levels, with a time-concentration profile more similar to the physiological melatonin pattern. K E Y W O R D Scritically ill patients, lipid nanovector encapsulation, melatonin, microemulsion, transdermal absorption
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.