Background The dual infection with SARS-CoV-2 is poorly described and is currently under discussion. We present a study of two strains of SARS-CoV-2 detected in the same patient during the same disease presentation. Case presentation A patient in their 90 s was hospitalised with fever. Oropharyngeal swab obtained on the next day (sample 1) tested positive for SARS-CoV-2. Five days later, the patient was transferred to the ICU (intensive care unit) of the hospital specialising in the treatment of COVID-19 patients, where the patient's condition progressively worsened and continuous oxygen insufflation was required. Repeated oropharyngeal swab (sample 2), which was taken eight days after the first one, also tested positive for SARS-CoV-2. After 5 days of ICU treatment, the patient died. The cause of death was a coronavirus infection, which progressed unfavourably due to premorbid status. We have performed sequencing of full SARS-CoV-2 genomes from oropharyngeal swabs obtained eight days apart. Genomic analysis revealed the presence of two genetically distant SARS-CoV-2 strains in both swabs. Detected strains belong to different phylogenetic clades (GH and GR) and differ in seven nucleotide positions. The relative abundance of strains was 70% (GH) and 30% (GR) in the first swab, and 3% (GH) and 97% (GR) in the second swab. Conclusions Our findings suggest that the patient was infected by two genetically distinct SARS-CoV-2 strains at the same time. One of the possible explanations is that the second infection was hospital-acquired. Change of the dominant strain ratio during disease manifestation could be explained by the advantage or higher virulence of the GR clade strain.
Being diverse and widely distributed globally, bats are a known reservoir of a series of emerging zoonotic viruses. We studied fecal viromes of twenty-six bats captured in 2015 in the Moscow Region and found 13 of 26 (50%) samples to be coronavirus positive. Of P. nathusii (the Nathusius’ pipistrelle), 3 of 6 samples were carriers of a novel MERS-related betacoronavirus. We sequenced and assembled the complete genome of this betacoronavirus and named it MOW-BatCoV strain 15-22. Whole genome phylogenetic analysis suggests that MOW-BatCoV/15-22 falls into a distinct subclade closely related to human and camel MERS-CoV. Unexpectedly, the phylogenetic analysis of the novel MOW-BatCoV/15-22 spike gene showed the closest similarity to CoVs from Erinaceus europaeus (European hedgehog). We suppose MOW-BatCoV could have arisen as a result of recombination between ancestral viruses of bats and hedgehogs. Molecular docking analysis of MOW-BatCoV/15-22 spike glycoprotein binding to DPP4 receptors of different mammals predicted the highest binding ability with DPP4 of the Myotis brandtii bat (docking score −320.15) and the E. europaeus (docking score –294.51). Hedgehogs are widely kept as pets and are commonly found in areas of human habitation. As this novel bat-CoV is likely capable of infecting hedgehogs, we suggest hedgehogs can act as intermediate hosts between bats and humans for other bat-CoVs.
Here we provide technical data for amplifying the complete genome of SARS-CoV-2 from clinical samples using only seventeen pairs of primers. We demonstrate that the CV2000bp primer panel successfully produces genomes when used with the residual total RNA extracts from positive clinical samples following diagnostic RT-PCRs (with Ct in the range from 13 to 20). The library preparation method reported here includes genome amplification of ~1750-2000 bp fragments followed by ultrasonic fragmentation combined with the introduction of Illumina compatible adapters. Using the SCV2000bp panel, 25 complete SARS-CoV-2 virus genome sequences were sequenced from clinical samples of COVID-19 patients from Moscow obtained in late March - early April.
Background: The effect of SARS-CoV-2 mutations and viral load on the severity of COVID-19 is not well understood. The possibility of reinfection with SARS-CoV-2 has already been reported, but dual infection with SARS-CoV-2 is poorly described and is currently under discussion. We describe a study of two strains of SARS-CoV-2 detected in the same patient during the same disease presentation. Methods: Two nasopharyngeal swabs were obtained eight days apart from the patient in their 90s, diagnosed with lobar pneumonia (J18.1). Both tests were positive for SARS-CoV-2 with high viral load (Ct = 13). We have performed high-throughput sequencing of SARS-CoV-2 genomes from both swabs. Findings: Genomic analysis of SARS-CoV-2 revealed the presence of two genetically distant strains in both swabs. Detected strains belong to different phylogenetic clades (GH and GR) and differ in the seven nucleotide positions. The relative abundance of strains was 70% (GH) and 30% (GR) in the first swab, and 3% (GH) and 97% (GR). Interpretation: Our findings suggest that the patient was infected by two genetically distinct SARS-CoV-2 strains at the same time. One of the possible explanations is that the second infection occurred in the hospital. Change of the dominant strain ratio during disease manifestation could be explained by the advantage or higher virulence of the strain belonging to the clade GR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.