Background: The immunological changes associated with COVID-19 are largely unknown. Methods: Patients with COVID-19 showing moderate (n = 18; SpO2 > 93%, respiratory rate > 22 per minute, CRP > 10 mg/L) and severe (n = 23; SpO2 < 93%, respiratory rate >30 per minute, PaO2/FiO2 ≤ 300 mmHg, permanent oxygen therapy, qSOFA > 2) infection, and 37 healthy donors (HD) were enrolled. Circulating T- and B-cell subsets were analyzed by flow cytometry. Results: CD4+Th cells were skewed toward Th2-like phenotypes within CD45RA+CD62L− (CM) and CD45RA–CD62L− (EM) cells in patients with severe COVID-19, while CM CCR6+ Th17-like cells were decreased if compared with HD. Within CM Th17-like cells “classical” Th17-like cells were increased and Th17.1-like cells were decreased in severe COVID-19 cases. Circulating CM follicular Th-like (Tfh) cells were decreased in all COVID-19 patients, and Tfh17-like cells represented the most predominant subset in severe COVID-19 cases. Both groups of patients showed increased levels of IgD-CD38++ B cells, while the levels of IgD+CD38− and IgD–CD38− were decreased. The frequency of IgD+CD27+ and IgD–CD27+ B cells was significantly reduced in severe COVID-19 cases. Conclusions: We showed an imbalance within almost all circulating memory Th subsets during acute COVID-19 and showed that altered Tfh polarization led to a dysregulated humoral immune response.
Background During the ongoing coronavirus disease COVID-19 pandemic, many individuals were infected with and have cleared the virus, developing virus-specific antibodies and effector/memory T cells. An important unanswered question is what levels of T cell and antibody responses are sufficient to protect from the infection. Methods In 5340 Moscow residents, we evaluated anti-SARS-CoV-2 IgM/IgG titers and frequencies of the T cells specific to the membrane, nucleocapsid, and spike proteins of SARS-CoV-2, using IFNγ ELISpot assay. Additionally, we evaluated the fractions of virus-specific CD4+ and CD8+ T cells using intracellular staining of IFNγ and IL2 followed by flow cytometry. We analyzed the COVID-19 rates as a function of the assessed antibody and T cell responses, using the Kaplan-Meyer estimator method, for up to 300 days post-inclusion. Results We showed that T cell and antibody responses are closely interconnected and are commonly induced concurrently. Magnitudes of both responses inversely correlated with infection probability. Individuals positive for both responses demonstrated the highest levels of protectivity against the SARS-CoV-2 infection. A comparable level of protection was found in individuals with antibody response only, while the T cell response by itself granted only intermediate protection. Conclusions We found that the contribution of the virus-specific antibodies to protection against the SARS-CoV-2 infection is more pronounced than that of the T cells. The data on the virus-specific IgG titers may be instructive for making decisions in personalized health care and public anti-COVID-19 policies.
The incorporation of glycemic index (GI) and glycemic load (GL) is a promising way to improve the accuracy of postprandial glycemic response (PPGR) prediction for personalized treatment of gestational diabetes (GDM). Our aim was to assess the prediction accuracy for PPGR prediction models with and without GI data in women with GDM and healthy pregnant women. The GI values were sourced from University of Sydney’s database and assigned to a food database used in the mobile app DiaCompanion. Weekly continuous glucose monitoring (CGM) data for 124 pregnant women (90 GDM and 34 control) were analyzed together with records of 1489 food intakes. Pearson correlation (R) was used to quantify the accuracy of predicted PPGRs from the model relative to those obtained from CGM. The final model for incremental area under glucose curve (iAUC120) prediction chosen by stepwise multiple linear regression had an R of 0.705 when GI/GL was included among input variables and an R of 0.700 when GI/GL was not included. In linear regression with coefficients acquired using regularization methods, which was tested on the data of new patients, R was 0.584 for both models (with and without inclusion of GI/GL). In conclusion, the incorporation of GI and GL only slightly improved the accuracy of PPGR prediction models when used in remote monitoring.
Background. Bromhexine hydrochloride has been suggested as a TMPRSS2 protease blocker that precludes the penetration of SARS-CoV-2 into cells. We aimed to assess the preventive potential of regular bromhexine hydrochloride intake for COVID-19 risk reduction in medical staff actively involved in the evaluation and treatment of patients with confirmed or suspected SARS-CoV-2 infection. Methods. In a single-centre randomized open-label study, medical staff managing patients with suspected and confirmed COVID-19 were enrolled and followed up for 8 weeks. The study began at the initiation of COVID-19 management in the clinic. The study was prematurely terminated after the enrollment of 50 participants without a history of SARS-CoV-2 infection: 25 were assigned to bromhexine hydrochloride treatment (8 mg 3 times per day), and 25 were controls. The composite primary endpoint was a positive nasopharyngeal swab polymerase chain reaction (PCR) test for SARS-CoV-2 or signs of clinical infection within 28 days and at week 8. Secondary endpoints included time from the first contact with a person with COVID-19 to the appearance of respiratory infection symptoms; the number of days before a first positive SARS-CoV-2 test; the number of asymptomatic participants with a positive nasopharyngeal swab test; the number of symptomatic COVID-19 cases; and adverse events. Results. The rate of the combined primary endpoint did not differ significantly between the active treatment group (2/25 [8%]) and control group (7/25 [28%]); P = 0.07 . A fewer number of participants developed symptomatic COVID-19 in the treatment group compared to controls (0/25 vs. 5/25; P = 0.02 ). Conclusion. Although the study was underpowered, it showed that Bromhexine hydrochloride prophylaxis was associated with a reduced rate of symptomatic COVID-19. The prophylactic treatment was not associated with a lower combined primary endpoint rate, a positive swab PCR test, or COVID-19 (ClinicalTrials.gov number, NCT04405999).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.