Celastrol, a plant-derived constituent of traditional Chinese medicine, has been proposed to offer significant potential as an antiobesity drug. However, the molecular mechanism for this activity is unknown. We show that the weight-lowering effects of celastrol are driven by decreased food consumption. Although young Lep mice respond with a decrease in food intake and body weight, adult Lep and Lep mice are unresponsive to celastrol, suggesting that functional leptin signaling in adult mice is required to elicit celastrol's catabolic actions. Protein tyrosine phosphatase 1 (PTP1B), a leptin negative-feedback regulator, has been previously reported to be one of celastrol's targets. However, we found that global PTP1B knockout (KO) and wild-type (WT) mice have comparable weight loss and hypophagia when treated with celastrol. Increased levels of uncoupling protein 1 (UCP1) in subcutaneous white and brown adipose tissue suggest celastrol-induced thermogenesis as a further mechanism. However, diet-induced obese UCP1 WT and KO mice have comparable weight loss upon celastrol treatment, and celastrol treatment has no effect on energy expenditure under ambient housing or thermoneutral conditions. Overall, our results suggest that celastrol-induced weight loss is hypophagia driven and age-dependently mediated by functional leptin signaling. Our data encourage reconsideration of therapeutic antiobesity strategies built on leptin sensitization.
Background/objectivesIndividuals carrying loss-of-function gene mutations for the adipocyte hormone leptin are morbidly obese, but respond favorably to replacement therapy. Recombinant leptin is however largely ineffective for the vast majority of obese individuals due to leptin resistance. One theory underlying leptin resistance is impaired leptin transport across the blood–brain-barrier (BBB). Here, we aim to gain new insights into the mechanisms of leptin BBB transport, and its role in leptin resistance.MethodsWe developed a novel tool for visualizing leptin transport using infrared fluorescently labeled leptin, combined with tissue clearing and light-sheet fluorescence microscopy. We corroborated these data using western blotting.ResultsUsing 3D whole brain imaging, we display comparable leptin accumulation in circumventricular organs of lean and obese mice, predominantly in the choroid plexus (CP). Protein quantification revealed comparable leptin levels in microdissected mediobasal hypothalami (MBH) of lean and obese mice (p = 0.99). We further found increased leptin receptor expression in the CP (p = 0.025, p = 0.0002) and a trend toward elevated leptin protein levels in the MBH (p = 0.17, p = 0.078) of obese mice undergoing weight loss interventions by calorie restriction or exendin-4 treatment.ConclusionsOverall, our findings suggest a crucial role for the CP in controlling the transport of leptin into the cerebrospinal fluid and from there to target areas such as the MBH, potentially mediated via the leptin receptor. Similar leptin levels in circumventricular organs and the MBH of lean and obese mice further suggest intact leptin BBB transport in leptin resistant mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.