Long-living individuals (LLIs) are used to study exceptional longevity. A number of genetic variants have been found associated in LLIs to date, but further identification of variants would improve knowledge on the mechanisms regulating the rate of aging. Therefore, we performed a genome-wide association study on 410 LLIs and 553 young control individuals with a 317K single-nucleotide polymorphism (SNP) chip to identify novel traits associated with aging. Among the top (p < 1 × 10(-4)) SNPs initially identified, we found rs10491334 (CAMKIV) (odds ratio [OR] = 0.55; 95% confidence interval [CI] 0.42-0.73; p = 2.88 × 10(-5)), a variant previously reported associated with diastolic blood pressure, associated also in a replication set of 116 LLIs and 160 controls (OR = 0.54; 95% CI 0.32-0.90; p = 9 × 10(-3)). Furthermore, in vitro analysis established that calcium/calmodulin-dependent protein kinase IV (CAMKIV) activates the survival proteins AKT, SIRT1, and FOXO3A, and we found that homozygous carriers of rs10491334 have a significant reduction in CAMKIV expression. This, together with the observed reduction in minor-allele carriers among centenarians, points to a detrimental role for the SNP. In conclusion, prolongevity genes are activated by CAMKIV, the levels of which are influenced by rs10491334, a SNP associated with human longevity.
The need to evaluate the health status of an athlete represents a crucial aim in preventive and protective sports science in order to identify the best diagnostic strategy to improve performance and reduce risks related to physical exercise. In the present review we aim to define the main biochemical and haematological markers that vary significantly during and after sports training to identify risk factors, at competitive and professional levels and to highlight the set up of a specific parameter’s panel for elite athletes. Moreover, we also intend to consider additional biomarkers, still under investigation, which could further contribute to laboratory sports medicine and provide reliable data that can be used by athlete’s competent staff in order to establish personal attitudes and prevent sports injuries.
BackgroundBased on its role in angiogenesis and apoptosis, the inhibition of NFκB activity is considered an effective treatment for cancer, hampered by the lack of selective and safe inhibitors. We recently demonstrated that the RH domain of GRK5 (GRK5-RH) inhibits NFκB, thus we evaluated its effects on cancer growth.MethodsThe role of GRK5-RH on tumor growth was assessed in a human cancer cell line (KAT-4). RH overexpression was induced by adenovirus mediated gene transfer; alternatively we administered a synthetic protein reproducing the RH domain of GRK5 (TAT-RH), actively transported into the cells.ResultsIn vitro, adenovirus mediated GRK5-RH overexpression (AdGRK5-NT) in human tumor cells (KAT-4) induces IκB accumulation and inhibits NFκB transcriptional activity leading to apoptotic events. In BALB/c nude mice harboring KAT-4 induced neoplasias, intra-tumor delivery of AdGRK5-NT reduces in a dose-dependent fashion tumor growth, with the highest doses completely inhibiting it. This phenomenon is paralleled by a decrease of NFκB activity, an increase of IκB levels and apoptotic events. To move towards a pharmacological setup, we synthesized the TAT-RH protein. In cultured KAT-4 cells, different dosages of TAT-RH reduced cell survival and increased apoptosis. In BALB/c mice, the anti-proliferative effects of TAT-RH appear to be dose-dependent and highest dose completely inhibits tumor growth.ConclusionOur data suggest that GRK5-RH inhibition of NFκB is a novel and effective anti-tumoral strategy and TAT-RH could be an useful tool in the fighting of cancer.
CaMKs link transient increases in intracellular Ca(2+) with biological processes. In myeloid leukemia cells, CaMKII, activated by the bcr-abl oncogene, promotes cell proliferation. Inhibition of CaMKII activity restricts cell proliferation, and correlates with growth arrest and differentiation. The mechanism by which the inhibition of CaMKII results in growth arrest and differentiation in myeloid leukemia cells is still unknown. We report that inhibition of CaMKII activity results in an upregulation of CaMKIV mRNA and protein in leukemia cell lines. Conversely, expression of CaMKIV inhibits autophosphorylation and activation of CaMKII, and elicits G0/G1cell cycle arrest,impairing cell proliferation. Furthermore, U937 cells expressing CaMKIV show elevated levels of Cdk inhibitors p27(kip1) and p16(ink4a) and reduced levels of cyclins A, B1 and D1. These findings were also confirmed in the K562 leukemic cell line. The relationship between CaMKII and CaMKIV is also observed in primary acute myeloid leukemia (AML) cells, and it correlates with their immunophenotypic profile. Indeed, immature MO/M1 AML showed increased CaMKIV expression and decreased pCaMKII, whereas highly differentiated M4/M5 AML showed decreased CaMKIV expression and increased pCaMKII levels. Our data reveal a novel cross-talk between CaMKII and CaMKIV and suggest that CaMKII suppresses the expression of CaMKIV to promote leukemia cell proliferation.
Insulin effects are mediated by multiple integrated signals generated by the insulin receptor. Fibroblasts, as most of mammalian cells, are a target of insulin action and are important actors in the vascular pathogenesis of hyperinsulinemia. A role for calcium-calmodulin-dependent kinases (CaMK) in insulin signaling has been proposed but has been under investigated. We investigated the role of the CaMK isoform II in insulin signaling in human fibroblasts. A rapid and transient increase of intracellular calcium concentration was induced by insulin stimulation, followed by increase of CaMKII activity, via L type calcium channels. Concomitantly, insulin stimulation induced Raf-1 and ERK activation, followed by thymidine uptake. Inhibition of CaMKII abrogated the insulin-induced Raf-1 and ERK activation, resulting also in the inhibition of thymidine incorporation. These results demonstrate that in fibroblasts, insulin-activated CaMKII is necessary, together with Raf-1, for ERK activation and cell proliferation. This represents a novel mechanism in the control of insulin signals leading to fibroblast proliferation, as well as a putative site for pharmacological intervention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.