Considerable ambiguity remains over the extent and nature of millennial/centennial-scale climate instability during the Last Interglacial (LIG). Here we analyse marine and terrestrial proxies from a deep-sea sediment sequence on the Portuguese Margin and combine results with an intensively dated Italian speleothem record and climate-model experiments. The strongest expression of climate variability occurred during the transitions into and out of the LIG. Our records also document a series of multi-centennial intra-interglacial arid events in southern Europe, coherent with cold water-mass expansions in the North Atlantic. The spatial and temporal fingerprints of these changes indicate a reorganization of ocean surface circulation, consistent with low-intensity disruptions of the Atlantic meridional overturning circulation (AMOC). The amplitude of this LIG variability is greater than that observed in Holocene records. Episodic Greenland ice melt and runoff as a result of excess warmth may have contributed to AMOC weakening and increased climate instability throughout the LIG.
We present the first integrated tephrochronological study (major and trace elemental glass composition, Sr and Nd isotope analyses, and 40Ar/39Ar dating) for the last one tenth (∼82 m) of the ∼900 m-thick Quaternary lacustrine succession of the Fucino Basin, the largest and probably only Central Apennine intermountain tectonic depression that hosts a continuous lacustrine succession documenting the Plio-Quaternary sedimentary history up to historical times. Major element glass compositions, determined using a wavelength-dispersive electron microprobe (WDS-EMPA), yielded the geochemical fingerprinting needed for a reliable identification of most of the 23 stratigraphically ordered tephra layers under investigation. These include tephra from Italian volcanoes such as Campi Flegrei, Etna, Colli Albani, Ischia, Vico, Sabatini, and undefined volcanic sources in the Neapolitan area and Latium region. The recognition of key Mediterranean marker tephra layers (e.g. X-5 and X-6) is supported by trace element data acquired by Laser Ablation Inductively Couple Plasma Mass Spectrometry (LA-ICP-MS). The Sr and Nd isotope compositions of selected layers where also determined for circumscribing the volcanic source of distal tephra and for supporting correlations with individual eruptive units. We also propose a new, more expeditious covariation diagram (CaO/FeOtot vs Cl) for identifying the volcanic source of trachytic to phonolitic and tephrytic to phonolitic tephra, that are the most common compositions of pyroclastic rocks from volcanoes of Campania and Latium regions. Finally, we present five new 40Ar/39Ar age determinations, including a new, analytically well-supported, and more precise 40Ar/39Ar age for the widespread Y-7 tephra, and the first 40Ar/39Ar age determinations for one tephra from the Sabatini volcanic district (∼126 ka) and one tephra from Neapolitan volcanic area (Campi Flegrei?; ∼159 ka). These newly dated tephra are widely dispersed (e.g. Monticchio, southern Italy, Adriatic Sea and Lake Ohrid, Macedonia-Abania) and have thus the potential to become important Mediterranean MIS 5 and MIS 6 tephrochronological markers. Altogether the new geochemical data and 40Ar/39Ar ages precisely constrain the chronology of the investigated Fucino succession spanning the last ∼190 ka. In light of these results and by considering that this sedimentary succession possibly extends back to ∼2 Ma, Fucino is likely to provide a very long, continuous tephrostratigraphic record for the Mediterranean area and become a key node in the dense network of tephra correlations of this region
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.