Schistosomiasis is one of the world's greatly neglected tropical diseases, and its control is largely dependent on a single drug, praziquantel. Here, we report the in vitro effect of piplartine, an amide isolated from Piper tuberculatum (Piperaceae), on Schistosoma mansoni adult worms. A piplartine concentration of 15.8 μM reduced the motor activity of worms and caused their death within 24h in a RPMI 1640 medium. Similarly, the highest sub-lethal concentration of piplartine (6.3 μM) caused a 75% reduction in egg production in spite of coupling. Additionally, piplartine induced morphological changes on the tegument, and a quantitative analysis carried out by confocal microscopy revealed an extensive tegumental destruction and damage in the tubercles. This damage was dose-dependent in the range of 15.8-630.2 μM. At doses higher than 157.6 μM, piplartine induced morphological changes in the oral and ventral sucker regions of the worms. It is the first time that the schistosomicidal activity has been reported for piplartine.
Schistosomiasis is one of the most important parasitic infections in humans that occur in many tropical and subtropical countries. Currently, the control of schistosomiasis rests with a single drug, praziquantel, which is effective against adult worms but not the larval stages. Recent studies have shown that piplartine, an amide isolated from plants of the genus Piper (Piperaceae), reveals interesting antischistosomal properties against Schistosoma mansoni adult worms. Here, we report the in vitro antischistosomal activity of piplartine on S. mansoni schistosomula of different ages (3 h old and 1, 3, 5, and 7 days old), and examine alterations on the tegumental surface of worms by means of confocal laser scanning microscopy. Piplartine at a concentration of 7.5 μM caused the death of all schistosomula within 120 h. The lethal effect occurred in a dose-dependent manner and was also dependent on the age of the parasite. Microscopy observation revealed extensive tegumental destruction, including blebbing, granularity, and a shorter body length. This report provides the first evidence that piplartine is able to kill schistosomula of different ages and reinforce that piplartine is a promising compound that could be used for the development of new schistosomicidal agent.
Schistosomiasis, caused by blood flukes of the genus Schistosoma, still imposes a considerable public health burden on large parts of the world. The control of this disease depends almost exclusively on the drug praziquantel, and there are no alternative drugs in sight. Natural compounds have recently attracted significant attention due to their relevance to parasitic infection and potential development into new therapeutic agents. Epiisopiloturine is an imidazole alkaloid isolated from the leaves of Pilocarpus microphyllus (Rutaceae), a native plant from Brazil. Here, we report the in vitro effect of this drug on the survival time of Schistosoma mansoni of different ages, such as 3 h old and 1, 3, 5, and 7 days old schistosomula, 49-day-old adults, and on egg output by adult worms. Epiisopiloturine at a concentration of 300 μg/mL caused the death of all schistosomula within 120 h. Extensive tegumental alterations and death were observed when adult schistosomes had been exposed to 150 μg/mL of the epiisopiloturine. At the highest sub-lethal dose of alkaloid (100 μg/mL), a 100% reduction in egg laying of paired adult worms was observed. Additionally, epiisopiloturine showed selective antischistosomal activity and exhibited no cytotoxicity to mammalian cells. This report provides the first evidence that epiisopiloturine is able to kill S. mansoni of different ages and inhibit worm egg laying.
Schistosomiasis is a neglected tropical disease that remains a considerable public health problem worldwide. Since the mainstay of schistosomiasis control is chemotherapy with a single drug, praziquantel, drug resistance is a concern. Here, we examined the in vitro effects of dermaseptin 01 (DS 01), an antimicrobial peptide found in the skin secretion of frogs of the genus Phyllomedusa, on Schistosoma mansoni adult worms. DS 01 at a concentration of 100 μg/ml reduced the worm motor activity and caused the death of all worms within 48 h in RPMI 1640 medium. At the highest sublethal concentration of antimicrobial peptide (75 μg/ml), a 100% reduction in egg output of paired female worms was observed. Additionally, DS 01 induced morphological alterations on the tegument of S. mansoni, and a quantitative analysis carried out by confocal microscopy revealed extensive destruction of the tubercles in a dose-dependent manner over the concentration range of 50-200 μg/ml. It was the first time that an anthelmintic activity towards schistosomes has been reported for a dermaseptin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.