Background The vast majority of people worldwide have been impacted by coronavirus disease (COVID-19). In addition to the millions of individuals who have been infected with the disease, billions of individuals have been asked or required by local and national governments to change their behavioral patterns. Previous research on epidemics or traumatic events suggests that this can lead to profound behavioral and mental health changes; however, researchers are rarely able to track these changes with frequent, near-real-time sampling or compare their findings to previous years of data for the same individuals. Objective By combining mobile phone sensing and self-reported mental health data among college students who have been participating in a longitudinal study for the past 2 years, we sought to answer two overarching questions. First, have the behaviors and mental health of the participants changed in response to the COVID-19 pandemic compared to previous time periods? Second, are these behavior and mental health changes associated with the relative news coverage of COVID-19 in the US media? Methods Behaviors such as the number of locations visited, distance traveled, duration of phone usage, number of phone unlocks, sleep duration, and sedentary time were measured using the StudentLife smartphone sensing app. Depression and anxiety were assessed using weekly self-reported ecological momentary assessments of the Patient Health Questionnaire-4. The participants were 217 undergraduate students, with 178 (82.0%) students providing data during the Winter 2020 term. Differences in behaviors and self-reported mental health collected during the Winter 2020 term compared to previous terms in the same cohort were modeled using mixed linear models. Results During the first academic term impacted by COVID-19 (Winter 2020), individuals were more sedentary and reported increased anxiety and depression symptoms ( P <.001) relative to previous academic terms and subsequent academic breaks. Interactions between the Winter 2020 term and the week of the academic term (linear and quadratic) were significant. In a mixed linear model, phone usage, number of locations visited, and week of the term were strongly associated with increased amount of COVID-19–related news. When mental health metrics (eg, depression and anxiety) were added to the previous measures (week of term, number of locations visited, and phone usage), both anxiety ( P <.001) and depression ( P =.03) were significantly associated with COVID-19–related news. Conclusions Compared with prior academic terms, individuals in the Winter 2020 term were more sedentary, anxious, and depressed. A wide variety of behaviors, including increased phone usage, decreased physical activity, and fewer locations visited, were associated with fluctuations in COVID-19 news repo...
BackgroundWorldwide, the vast majority of people have been impacted by COVID-19. While millions of individuals have become infected, billions of individuals have been asked or required by local and national governments to change their behavioral patterns. Previous research on epidemics or traumatic events suggest this can lead to profound behavioral and mental health changes, but rarely are researchers able to track these changes with frequent, near real-time sampling or compare these to previous years of data on the same individuals.ObjectivesWe seek to answer two overarching questions by combining mobile phone sensing and self-reported mental health data among college students participating in a longitudinal study for the past two years. First, have behaviors and mental health changed in response to the COVID-19 pandemic as compared to previous time periods within the same participants? Second, did behavior and mental health changes track the relative news coverage of COVID-19 in the US media?MethodsBehaviors were measured using the StudentLife mobile smartphone sensing app. Depression and anxiety were assessed using weekly self-reported Ecological Momentary Assessments (EMAs). Differences in behaviors and self-reported mental health collected during the Winter 2020 term (the term in which the coronavirus pandemic started), as compared to prevous terms in the same cohort, were modeled using mixed linear models.ResultsDuring the initial COVID-19 impacted academic term (Winter 2020), individuals were more sedentary and reported increased anxiety and depression symptoms (P<.001), relative to the previous academic terms and subsequent academic breaks. Interactions between the Winter 2020 term and week of academic term (linear and quadratic) were significant. In a mixed linear model, phone usage, number of locations visited, and week of the term, were strongly associated with increased coronavirus-related news. When mental health metrics (e.g., depression and anxiety) were added to the previous measures (week of term, number of locations visited, and phone usage), both anxiety (P<.001) and depression (P<.05) were significantly associated with coronavirus-related news.ConclusionsCompared with prior academic terms, individuals in Winter 2020 were more sedentary, anxious, and depressed. A wide variety of behaviors, including increased phone usage, decreased physical activity, and fewer locations visited, are associated with fluctuations in COVID-19 news reporting. While this large-scale shift in mental health and behavior is unsurprising, its characterization is particularly important to help guide the development of methods that could reduce the impact of future catastrophic events on the mental health of the population.
Background Since late 2019, the lives of people across the globe have been disrupted by COVID-19. Millions of people have become infected with the disease, while billions of people have been continually asked or required by local and national governments to change their behavioral patterns. Previous research on the COVID-19 pandemic suggests that it is associated with large-scale behavioral and mental health changes; however, few studies have been able to track these changes with frequent, near real-time sampling or compare these changes to previous years of data for the same individuals. Objective By combining mobile phone sensing and self-reported mental health data in a cohort of college-aged students enrolled in a longitudinal study, we seek to understand the behavioral and mental health impacts associated with the COVID-19 pandemic, measured by interest across the United States in the search terms coronavirus and COVID fatigue. Methods Behaviors such as the number of locations visited, distance traveled, duration of phone use, number of phone unlocks, sleep duration, and sedentary time were measured using the StudentLife mobile smartphone sensing app. Depression and anxiety were assessed using weekly self-reported ecological momentary assessments, including the Patient Health Questionnaire-4. The participants were 217 undergraduate students. Differences in behaviors and self-reported mental health collected during the Spring 2020 term, as compared to previous terms in the same cohort, were modeled using mixed linear models. Results Linear mixed models demonstrated differences in phone use, sleep, sedentary time and number of locations visited associated with the COVID-19 pandemic. In further models, these behaviors were strongly associated with increased interest in COVID fatigue. When mental health metrics (eg, depression and anxiety) were added to the previous measures (week of term, number of locations visited, phone use, sedentary time), both anxiety and depression (P<.001) were significantly associated with interest in COVID fatigue. Notably, these behavioral and mental health changes are consistent with those observed around the initial implementation of COVID-19 lockdowns in the spring of 2020. Conclusions In the initial lockdown phase of the COVID-19 pandemic, people spent more time on their phones, were more sedentary, visited fewer locations, and exhibited increased symptoms of anxiety and depression. As the pandemic persisted through the spring, people continued to exhibit very similar changes in both mental health and behaviors. Although these large-scale shifts in mental health and behaviors are unsurprising, understanding them is critical in disrupting the negative consequences to mental health during the ongoing pandemic.
As smartphone usage has become increasingly prevalent in our society, so have rates of depression, particularly among young adults. Individual differences in smartphone usage patterns have been shown to reflect individual differences in underlying affective processes such as depression ( Wang et al., 2018 ). In the current study, a positive relationship was identified between smartphone screen time (e.g., phone unlock duration) and resting-state functional connectivity (RSFC) between the subgenual cingulate cortex (sgCC), a brain region implicated in depression and antidepressant treatment response, and regions of the ventromedial/orbitofrontal cortex (OFC), such that increased phone usage was related to stronger connectivity between these regions. This cluster was subsequently used to constrain subsequent analyses looking at individual differences in depressive symptoms in the same cohort and observed partial replication in a separate cohort. Similar analyses were subsequently performed on metrics of circadian rhythm consistency showing a negative relationship between connectivity of the sgCC and OFC. The data and analyses presented here provide relatively simplistic preliminary analyses which replicate and provide an initial step in combining functional brain activity and smartphone usage patterns to better understand issues related to mental health. Smartphones are a prevalent part of modern life and the usage of mobile sensing data from smartphones promises to be an important tool for mental health diagnostics and neuroscience research.
Brain circuit functioning and connectivity between specific regions allow us to learn, remember, recognize and think as humans. In this paper, we ask the question if mobile sensing from phones can predict brain functional connectivity. We study the brain resting-state functional connectivity (RSFC) between the ventromedial prefrontal cortex (vmPFC) and the amygdala, which has been shown by neuroscientists to be associated with mental illness such as anxiety and depression. We discuss initial results and insights from the NeuroSence study, an exploratory study of 105 first year college students using neuroimaging and mobile sensing across one semester. We observe correlations between several behavioral features from students' mobile phones and connectivity between vmPFC and amygdala, including conversation duration (r=0.365, p<0.001), sleep onset time (r=0.299, p<0.001) and the number of phone unlocks (r=0.253, p=0.029). We use a support vector classifier and 10-fold cross validation and show that we can classify whether students have higher (i.e., stronger) or lower (i.e., weaker) vmPFC-amygdala RSFC purely based on mobile sensing data with an F1 score of 0.793. To the best of our knowledge, this is the first paper to report that resting-state brain functional connectivity can be predicted using passive sensing data from mobile phones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.