The neocortex is disproportionately expanded in human compared with mouse1,2, both in its total volume relative to subcortical structures and in the proportion occupied by supragranular layers composed of neurons that selectively make connections within the neocortex and with other telencephalic structures. Single-cell transcriptomic analyses of human and mouse neocortex show an increased diversity of glutamatergic neuron types in supragranular layers in human neocortex and pronounced gradients as a function of cortical depth3. Here, to probe the functional and anatomical correlates of this transcriptomic diversity, we developed a robust platform combining patch clamp recording, biocytin staining and single-cell RNA-sequencing (Patch-seq) to examine neurosurgically resected human tissues. We demonstrate a strong correspondence between morphological, physiological and transcriptomic phenotypes of five human glutamatergic supragranular neuron types. These were enriched in but not restricted to layers, with one type varying continuously in all phenotypes across layers 2 and 3. The deep portion of layer 3 contained highly distinctive cell types, two of which express a neurofilament protein that labels long-range projection neurons in primates that are selectively depleted in Alzheimer’s disease4,5. Together, these results demonstrate the explanatory power of transcriptomic cell-type classification, provide a structural underpinning for increased complexity of cortical function in humans, and implicate discrete transcriptomic neuron types as selectively vulnerable in disease.
The correct subcellular distribution of proteins establishes the complex morphology and function of neurons. Fluorescence microscopy techniques are invaluable to investigate subcellular protein distribution, but they suffer from the limited ability to efficiently and reliably label endogenous proteins with fluorescent probes. We developed ORANGE: Open Resource for the Application of Neuronal Genome Editing, which mediates targeted genomic integration of epitope tags in rodent dissociated neuronal culture, in organotypic slices, and in vivo. ORANGE includes a knock-in library for in-depth investigation of endogenous protein distribution, viral vectors, and a detailed two-step cloning protocol to develop knockins for novel targets. Using ORANGE with (live-cell) superresolution microscopy, we revealed the dynamic nanoscale organization of endogenous neurotransmitter receptors and synaptic scaffolding proteins, as well as previously uncharacterized proteins. Finally, we developed a mechanism to create multiple knock-ins in neurons, mediating multiplex imaging of endogenous proteins. Thus, ORANGE enables quantification of expression, distribution, and dynamics for virtually any protein in neurons at nanoscale resolution.
The neocortex is disproportionately expanded in human compared to mouse, both in its total volume relative to subcortical structures and in the proportion occupied by supragranular layers that selectively make connections within the cortex and other telencephalic structures. Single-cell transcriptomic analyses of human and mouse cortex show an increased diversity of glutamatergic neuron types in supragranular cortex in human and pronounced gradients as a function of cortical depth. To probe the functional and anatomical correlates of this transcriptomic diversity, we describe a robust Patch-seq platform using neurosurgically-resected human tissues. We characterize the morphological and physiological properties of five transcriptomically defined human glutamatergic supragranular neuron types. Three of these types have properties that are specialized compared to the more homogeneous properties of transcriptomically defined homologous mouse neuron types. The two remaining supragranular neuron types, located exclusively in deep layer 3, do not have clear mouse homologues in supragranular cortex but are transcriptionally most similar to deep layer mouse intratelencephalic-projecting neuron types. Furthermore, we reveal the transcriptomic types in deep layer 3 that express high levels of non-phosphorylated heavy chain neurofilament protein that label long-range neurons known to be selectively depleted in Alzheimer’s disease. Together, these results demonstrate the power of transcriptomic cell type classification, provide a mechanistic underpinning for increased complexity of cortical function in human cortical evolution, and implicate discrete transcriptomic cell types as selectively vulnerable in disease.
The left temporal lobe is an integral part of the language system and its cortical structure and function associate with general intelligence. However, whether cortical laminar architecture and cellular properties of this brain area relate to verbal intelligence is unknown. Here, we addressed this using histological analysis and cellular recordings of neurosurgically resected temporal cortex in combination with presurgical IQ scores. We find that subjects with higher general and verbal IQ scores have thicker left (but not right) temporal cortex (Brodmann area 21, BA21). The increased thickness is due to the selective increase in layers 2 and 3 thickness, accompanied by lower neuron densities, and larger dendrites and cell body size of pyramidal neurons in these layers. Furthermore, these neurons sustain faster action potential kinetics, which improves information processing. Our results indicate that verbal mental ability associates with selective adaptations of supragranular layers and their cellular micro-architecture and function in left, but not right temporal cortex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.