Acute appendicitis (AA) is among the most common cause of acute abdominal pain. Diagnosis of AA is challenging; a variable combination of clinical signs and symptoms has been used together with laboratory findings in several scoring systems proposed for suggesting the probability of AA and the possible subsequent management pathway. The role of imaging in the diagnosis of AA is still debated, with variable use of US, CT and MRI in different settings worldwide. Up to date, comprehensive clinical guidelines for diagnosis and management of AA have never been issued. In July 2015, during the 3rd World Congress of the WSES, held in Jerusalem (Israel), a panel of experts including an Organizational Committee and Scientific Committee and Scientific Secretariat, participated to a Consensus Conference where eight panelists presented a number of statements developed for each of the eight main questions about diagnosis and management of AA. The statements were then voted, eventually modified and finally approved by the participants to The Consensus Conference and lately by the board of co-authors. The current paper is reporting the definitive Guidelines Statements on each of the following topics: 1) Diagnostic efficiency of clinical scoring systems, 2) Role of Imaging, 3) Non-operative treatment for uncomplicated appendicitis, 4) Timing of appendectomy and in-hospital delay, 5) Surgical treatment 6) Scoring systems for intra-operative grading of appendicitis and their clinical usefulness 7) Non-surgical treatment for complicated appendicitis: abscess or phlegmon 8) Pre-operative and post-operative antibiotics.
Peri-operative SARS-CoV-2 infection increases postoperative mortality. The aim of this study was to determine the optimal duration of planned delay before surgery in patients who have had SARS-CoV-2 infection. This international, multicentre, prospective cohort study included patients undergoing elective or emergency surgery during October 2020. Surgical patients with pre-operative SARS-CoV-2 infection were compared with those without previous SARS-CoV-2 infection. The primary outcome measure was 30-day postoperative mortality. Logistic regression models were used to calculate adjusted 30-day mortality rates stratified by time from diagnosis of SARS-CoV-2 infection to surgery. Among 140,231 patients (116 countries), 3127 patients (2.2%) had a pre-operative SARS-CoV-2 diagnosis. Adjusted 30-day mortality in patients without SARS-CoV-2 infection was 1.5% (95%CI 1.4-1.5). In patients with a pre-operative SARS-CoV-2 diagnosis, mortality was increased in patients having surgery within 0-2 weeks, 3-4 weeks and 5-6 weeks of the diagnosis (odds ratio (95%CI) 4.1 (3.3-4.8), 3.9 (2.6-5.1) and 3.6 (2.0-5.2), respectively). Surgery performed ≥ 7 weeks after SARS-CoV-2 diagnosis was associated with a similar mortality risk to baseline (odds ratio (95%CI) 1.5 (0.9-2.1)). After a ≥ 7 week delay in undertaking surgery following SARS-CoV-2 infection, patients with ongoing symptoms had a higher mortality than patients whose symptoms had resolved or who had been asymptomatic (6.0% (95%CI 3.2-8.7) vs. 2.4% (95%CI 1.4-3.4) vs. 1.3% (95%CI 0.6-2.0), respectively). Where possible, surgery should be delayed for at least 7 weeks following SARS-CoV-2 infection. Patients with ongoing symptoms ≥ 7 weeks from diagnosis may benefit from further delay.
The CIAOW study (Complicated intra-abdominal infections worldwide observational study) is a multicenter observational study underwent in 68 medical institutions worldwide during a six-month study period (October 2012-March 2013). The study included patients older than 18 years undergoing surgery or interventional drainage to address complicated intra-abdominal infections (IAIs).1898 patients with a mean age of 51.6 years (range 18-99) were enrolled in the study. 777 patients (41%) were women and 1,121 (59%) were men. Among these patients, 1,645 (86.7%) were affected by community-acquired IAIs while the remaining 253 (13.3%) suffered from healthcare-associated infections. Intraperitoneal specimens were collected from 1,190 (62.7%) of the enrolled patients.827 patients (43.6%) were affected by generalized peritonitis while 1071 (56.4%) suffered from localized peritonitis or abscesses.The overall mortality rate was 10.5% (199/1898).According to stepwise multivariate analysis (PR = 0.005 and PE = 0.001), several criteria were found to be independent variables predictive of mortality, including patient age (OR = 1.1; 95%CI = 1.0-1.1; p < 0.0001), the presence of small bowel perforation (OR = 2.8; 95%CI = 1.5-5.3; p < 0.0001), a delayed initial intervention (a delay exceeding 24 hours) (OR = 1.8; 95%CI = 1.5-3.7; p < 0.0001), ICU admission (OR = 5.9; 95%CI = 3.6-9.5; p < 0.0001) and patient immunosuppression (OR = 3.8; 95%CI = 2.1-6.7; p < 0.0001).
SummaryBackgroundSurgical site infection (SSI) is one of the most common infections associated with health care, but its importance as a global health priority is not fully understood. We quantified the burden of SSI after gastrointestinal surgery in countries in all parts of the world.MethodsThis international, prospective, multicentre cohort study included consecutive patients undergoing elective or emergency gastrointestinal resection within 2-week time periods at any health-care facility in any country. Countries with participating centres were stratified into high-income, middle-income, and low-income groups according to the UN's Human Development Index (HDI). Data variables from the GlobalSurg 1 study and other studies that have been found to affect the likelihood of SSI were entered into risk adjustment models. The primary outcome measure was the 30-day SSI incidence (defined by US Centers for Disease Control and Prevention criteria for superficial and deep incisional SSI). Relationships with explanatory variables were examined using Bayesian multilevel logistic regression models. This trial is registered with ClinicalTrials.gov, number NCT02662231.FindingsBetween Jan 4, 2016, and July 31, 2016, 13 265 records were submitted for analysis. 12 539 patients from 343 hospitals in 66 countries were included. 7339 (58·5%) patient were from high-HDI countries (193 hospitals in 30 countries), 3918 (31·2%) patients were from middle-HDI countries (82 hospitals in 18 countries), and 1282 (10·2%) patients were from low-HDI countries (68 hospitals in 18 countries). In total, 1538 (12·3%) patients had SSI within 30 days of surgery. The incidence of SSI varied between countries with high (691 [9·4%] of 7339 patients), middle (549 [14·0%] of 3918 patients), and low (298 [23·2%] of 1282) HDI (p<0·001). The highest SSI incidence in each HDI group was after dirty surgery (102 [17·8%] of 574 patients in high-HDI countries; 74 [31·4%] of 236 patients in middle-HDI countries; 72 [39·8%] of 181 patients in low-HDI countries). Following risk factor adjustment, patients in low-HDI countries were at greatest risk of SSI (adjusted odds ratio 1·60, 95% credible interval 1·05–2·37; p=0·030). 132 (21·6%) of 610 patients with an SSI and a microbiology culture result had an infection that was resistant to the prophylactic antibiotic used. Resistant infections were detected in 49 (16·6%) of 295 patients in high-HDI countries, in 37 (19·8%) of 187 patients in middle-HDI countries, and in 46 (35·9%) of 128 patients in low-HDI countries (p<0·001).InterpretationCountries with a low HDI carry a disproportionately greater burden of SSI than countries with a middle or high HDI and might have higher rates of antibiotic resistance. In view of WHO recommendations on SSI prevention that highlight the absence of high-quality interventional research, urgent, pragmatic, randomised trials based in LMICs are needed to assess measures aiming to reduce this preventable complication.FundingDFID-MRC-Wellcome Trust Joint Global Health Trial Development Grant,...
BackgroundIn 2013 Guidelines on diagnosis and management of ASBO have been revised and updated by the WSES Working Group on ASBO to develop current evidence-based algorithms and focus indications and safety of conservative treatment, timing of surgery and indications for laparoscopy.RecommendationsIn absence of signs of strangulation and history of persistent vomiting or combined CT-scan signs (free fluid, mesenteric edema, small-bowel feces sign, devascularization) patients with partial ASBO can be managed safely with NOM and tube decompression should be attempted. These patients are good candidates for Water-Soluble-Contrast-Medium (WSCM) with both diagnostic and therapeutic purposes. The radiologic appearance of WSCM in the colon within 24 hours from administration predicts resolution. WSCM maybe administered either orally or via NGT both immediately at admission or after failed conservative treatment for 48 hours. The use of WSCM is safe and reduces need for surgery, time to resolution and hospital stay.NOM, in absence of signs of strangulation or peritonitis, can be prolonged up to 72 hours. After 72 hours of NOM without resolution, surgery is recommended.Patients treated non-operatively have shorter hospital stay, but higher recurrence rate and shorter time to re-admission, although the risk of new surgically treated episodes of ASBO is unchanged. Risk factors for recurrences are age <40 years and matted adhesions. WSCM does not decrease recurrence rates or recurrences needing surgery.Open surgery is often used for strangulating ASBO as well as after failed conservative management. In selected patients and with appropriate skills, laparoscopic approach is advisable using open access technique. Access in left upper quadrant or left flank is the safest and only completely obstructing adhesions should be identified and lysed with cold scissors. Laparoscopic adhesiolysis should be attempted preferably if first episode of SBO and/or anticipated single band. A low threshold for open conversion should be maintained.Peritoneal adhesions should be prevented. Hyaluronic acid-carboxycellulose membrane and icodextrin decrease incidence of adhesions. Icodextrin may reduce the risk of re-obstruction. HA cannot reduce need of surgery.Adhesions quantification and scoring maybe useful for achieving standardized assessment of adhesions severity and for further research in diagnosis and treatment of ASBO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.