Drug-resistant variants are frequently present in both recently and chronically infected therapy-naive patients. Drug-resistant variants are most commonly seen in patients infected with subtype B virus, probably because of longer exposure of these viruses to drugs. However, an increase in baseline resistance in non-B viruses is observed. These data argue for testing all drug-naive patients and are of relevance when guidelines for management of postexposure prophylaxis and first-line therapy are updated.
Superspreading events shaped the Coronavirus Disease 2019 (COVID-19) pandemic, and their rapid identification and containment are essential for disease control. Here we provide a national-scale analysis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) superspreading during the first wave of infections in Austria, a country that played a major role in initial virus transmissions in Europe. Capitalizing on Austria’s well-developed epidemiological surveillance system, we identified major SARS-CoV-2 clusters during the first wave of infections and performed deep whole-genome sequencing of more than 500 virus samples. Phylogenetic-epidemiological analysis enabled the reconstruction of superspreading events and charts a map of tourism-related viral spread originating from Austria in spring 2020. Moreover, we exploited epidemiologically well-defined clusters to quantify SARS-CoV-2 mutational dynamics, including the observation of a low-frequency mutation that progressed to fixation within the infection chain. Time-resolved virus sequencing unveiled viral mutation dynamics within individuals with COVID-19, and epidemiologically validated infector-infectee pairs enabled us to determine an average transmission bottleneck size of 103 SARS-CoV-2 particles. In conclusion, this study illustrates the power of combining epidemiological analysis with deep viral genome sequencing to unravel the spread of SARS-CoV-2, and to gain fundamental insights into mutational dynamics and transmission properties.
The SPREAD Programme investigated prospectively the time trend from September 2002 through December 2005 of transmitted drug resistance (TDR) among 2793 patients in 20 European countries and in Israel with newly diagnosed human immunodeficiency virus type 1 (HIV-1) infection. The overall prevalence of TDR was 8.4% (225 of 2687 patients; 95% confidence interval [CI], 7.4%-9.5%), the prevalence of nucleoside reverse-transcriptase inhibitor (NRTI) resistance was 4.7% (125 of 2687 patients; 95% CI, 3.9%-5.5%), the prevalence of nonucleoside reverse-transcriptase inhibitor (NNRTI) resistance was 2.3% (62 of 2687 patients; 95% CI, 1.8%-2.9%), and the prevalence of protease inhibitor (PI) resistance was 2.9% (79 of 2687 patients; 95% CI, 2.4%-3.6%). There was no time trend in the overall TDR or in NRTI resistance, but there was a statistically significant decrease in PI resistance (P = .04) and in NNRTI resistance after an initial increase (P = .02). We found that TDR appears to be stabilizing in Europe, consistent with recent reports of decreasing drug resistance and improved viral suppression in patients treated for HIV-1 infection.
CD8+ T cell immunity to SARS-CoV-2 has been implicated in COVID-19 severity and virus control. Here, we identified nonsynonymous mutations in MHC-I-restricted CD8+ T cell epitopes after deep sequencing of 747 SARS-CoV-2 virus isolates. Mutant peptides exhibited diminished or abrogated MHC-I binding in a cell-free in vitro assay. Reduced MHC-I binding of mutant peptides was associated with decreased proliferation, IFN-γ production and cytotoxic activity of CD8+ T cells isolated from HLA-matched COVID-19 patients. Single cell RNA sequencing of ex vivo expanded, tetramer-sorted CD8+ T cells from COVID-19 patients further revealed qualitative differences in the transcriptional response to mutant peptides. Our findings highlight the capacity of SARS-CoV-2 to subvert CD8+ T cell surveillance through point mutations in MHC-I-restricted viral epitopes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.