Gray matter (GM) lesions are recognized as important components of the pathology of multiple sclerosis (MS), and involvement of the deep gray matter (DGM) is suggested by magnetic resonance imaging. The aims of this study were to determine the frequency and distribution of lesions and characterize the inflammatory and neurodegenerative changes in DGM of MS patients. Histochemistry, immunohistochemistry, and morphometry were performed on whole coronal sections of 14 MS and 12 control (6 normal, 6 from amyotrophic lateral sclerosis patients) brains. Demyelinating lesions were frequent in MS DGM; most often in the thalamus and caudate, but they were also seen in the putamen, pallidum, claustrum, amygdala, hypothalamus, and substantia nigra. Most DGM lesions involved both GM and white matter. Inflammation in active DGM lesions was similar to that in lesions only in white matter but was less intense, and there was a preponderance of activated microglia, scarce myelin-laden macrophages, and a lesser extent of axonal damage. Neuronal loss was observed both in DGM lesions and nondemyelinated DGM with neuron atrophy in nondemyelinated DGM. In conclusion, demyelination and neurodegenerative changes are common in MS DGM and may contribute to clinical impairment. Inflammation in DGM lesions is intermediate between the destructive inflammation of white matter lesions and the minimal inflammation of cortical lesions. We hypothesize that alterations of glutamate reuptake mechanisms may contribute to these differences.
In multiple sclerosis (MS), dendritic cells (DCs) recruited to the central nervous system (CNS) are thought to be involved in the regulation of autoimmune responses directed against myelin antigens. To better understand the role of DCs in CNS inflammation, we performed a detailed immunohistochemical analysis of DC maturation markers and of DC relationship to CNS-infiltrating T cells in autopsy brain tissue of patients with MS. We also investigated the presence of DCs containing myelin debris in MS lesions. Myeloid DC subsets were identified using the following markers: CD1a for immature DCs; DC-SIGN for immature and mature DCs; and fascin, CD83, DC-LAMP, and CCR7 for mature DCs. The most common finding was the presence of cells expressing DC-SIGN and containing myelin components in the perivascular cuffs of early active and chronic (both active and inactive) MS lesions. Perivascular CD1a DCs were detected in active lesions in only one of 10 patients with MS who were examined. Although less numerous than DC-SIGN DCs, cells expressing mature DC markers were consistently detected in the inflamed meninges and perivascular cuffs of most active lesions examined. CCR7 immunostaining was predominantly confined to activated microglia at the lesion edges. Some perivascular DC-SIGN cells were found in close proximity to or contacting rare proliferating lymphocytes, most of which expressed the DC-SIGN ligand ICAM-3 and CD8. These data suggest that DCs recruited and maturing in MS lesions, where self-antigens are made available by continuous myelin destruction, may contribute to the local activation and expansion of presumably pathogenic T cells.
Immunization of common marmosets (Callithrix jacchus) with a single dose of human myelin in CFA, without administration of Bordetella pertussis, induces a form of autoimmune encephalomyelitis (EAE) resembling in its clinical and pathological expression multiple sclerosis in humans. The EAE incidence in our outbred marmoset colony is 100%. This study was undertaken to assess the genetic and immunological basis of the high EAE susceptibility. To this end, we determined the separate contributions of immune reactions to myelin/oligodendrocyte glycoprotein (MOG) and myelin basic protein to the EAE induction. Essentially all pathological features of myelin-induced EAE were also found in animals immunized with MOG in CFA, whereas in animals immunized with myelin basic protein in CFA clinical and pathological signs of EAE were lacking. The epitope recognition by anti-MOG Abs and T cells were assessed. Evidence is provided that the initiation of EAE is based on T and B cell activation by the encephalitogenic phMOG14–36 peptide in the context of monomorphic Caja-DRB*W1201 molecules.
Cortical involvement in multiple sclerosis (MS) is emerging as an important determinant of disease progression. The mechanisms responsible for MS cortical pathology are not fully characterized. The objective of this study was to assess the role of excitotoxicity in MS cortex, evaluating excitatory amino acid transporter (EAAT) expression and its relationship with demyelination, inflammation, gliosis, and neuronal and synaptic pathology. EAATs are essential in maintaining low extracellular glutamate concentrations and preventing excitotoxicity. Ten MS brains (3 relapsing-remitting MS cases and 7 secondary progressive MS cases) were evaluated by immunohistochemistry for myelin basic protein, CD68, HLA-DR, EAAT1, EAAT2, glial fibrillary acidic protein, phosphorylated c-Jun N-terminal kinase (pJNK), synaptophysin, and neurofilaments. Cortical lesions were frequently observed in MS brains in variable numbers and extensions. In cortical lesions, activated microglia infiltration correlated with focal loss of EAAT1, EAAT2, and synaptophysin immunostaining, and with neuronal immunostaining for pJNK, a protein involved in response to excitotoxic injury. No reduction of EAATs or synaptophysin immunostaining was observed in demyelinated cortex in the absence of activated microglia. Alterations of the mechanisms of glutamate reuptake are found in cortical MS lesions in the presence of activated microglia and are associated with signs of neuronal and synaptic damage suggestive of excitotoxicity. Excitotoxicity may be involved in the pathogenesis of demyelination and of neuronal and synaptic damage in MS cortex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.