Polycystic ovary syndrome (PCOS) is the most common endocrine disorder in young reproductive-aged women. PCOS is often associated with obesity and impairs reproductive health. Even though several theories have been proposed to explain the pathogenic mechanism of PCOS, the role of insulin resistance (IR) as a key etiological component, independently of (but amplified by) obesity, is well recognized. The consequent hyperinsulinemia activates excessive ovarian androgen production, leading to PCOS. Additionally, the state of chronic inflammation related to obesity impacts ovarian physiology due to insulin sensitivity impairment. The first-line treatment for adolescents with obesity and PCOS includes lifestyle changes; personalized dietary interventions; and, when needed, weight loss. Medical nutrition therapy (MNT) and the use of specific food supplements in these patients aim at improving symptoms and signs, including insulin resistance and metabolic and reproductive functions. The purpose of this narrative review is to present and discuss PCOS in adolescents with obesity, its relationship with IR and the role of MNT and food supplements in treatment. Appropriate early dietary intervention for the management of adolescents with obesity and PCOS should be considered as the recommended approach to restore ovulation and to protect fertility.
An allergy to cow’s milk requires the avoidance of cow’s milk proteins and, in some infants, the use of a hypoallergenic formula. This review aims to summarize the current evidence concerning different types of hydrolysed formulas (HF), and recommendations for the treatment of IgE- and non-IgE-mediated cow’s milk allergy and functional gastrointestinal disorders in infancy, for which some dietary intervention and HF may be of benefit to both immune and motor mechanisms. Current guidelines recommend cow’s milk protein (i.e., whey or casein) extensively hydrolysed formula (eHF) as the first choice for cow’s milk allergy treatment, and amino acid formulas for more severe cases or those with reactions to eHF. Rice hydrolysed formulas (rHF) have also become available in recent years. Both eHF and rHF are well tolerated by the majority of children allergic to cow’s milk, with no concerns regarding body growth or adverse effects. Some hydrolysates may have a pro-active effect in modulating the immune system due to the presence of small peptides and additional components, like biotics. Despite encouraging results on tolerance acquisition, evidence is still not conclusive, thus hampering our ability to draw firm conclusions. In clinical practice, the choice of hypoallergenic formula should be based on the infant’s age, the severity, frequency and persistence of symptoms, immune phenotype, growth pattern, formula cost, and in vivo proof of tolerance and efficacy.
The COVID-19 pandemic has led to the implementation of policies that mandate various restrictions on daily life, including social distancing, the closure of public services and schools, and movement limitations. Even though these restrictive measures decreased the COVID-19 spread, they may have detrimental effects on various lifestyle components such as physical inactivity, sedentary behavior, and dietary habits, influencing the maintenance of weight and contributing to obesity among children and adolescents. The coexistence of childhood obesity and COVID-19 and changes in the bioecological environment have put children and adolescents at increased risk for developing obesity and exacerbating the severity of this disorder. The use of telehealth technology is a modern approach useful for the delivery of health care services by health care professionals, where distance is a critical factor. Telehealth is effective in promoting increased self-monitoring and behavioral change, and provides the opportunity to perform online nutritional support and exercise training programs to promote a healthy lifestyle and reduce sedentary behaviors in children and adolescents. Telehealth, including tele-exercise and tele-nutrition, has the potential to address many of the key challenges in providing health services, including in patients with obesity during the COVID-19 outbreak. This narrative review aims to describe the role of telehealth as an opportunity in the management of pediatric obesity in the COVID-19 era, and to deliver nutrition and exercise programs for the maintenance of health.
(1) Background. Visceral adiposity index (VAI) has been recently identified as a new cardiometabolic risk marker reflecting abdominal fat distribution and dyslipidaemia. The aim of the present paper was to evaluate the relationship between VAI, daily energy intake and metabolic syndrome (MetS) in a cohort of obese Caucasian children and adolescents, aged 8 to 15 years. (2) Methods. Consecutive Italian children and adolescents with obesity, according to World Health Organization were enrolled. Anthropometric parameters and blood pressure were measured. Fasting blood samples have been analyzed for lipids, insulin and glucose levels. MetS was diagnosed using identification and prevention of dietary- and lifestyle-induced health effects in children and infants (IDEFICS) or International Diabetes Federation (IDF) criteria according to age. Homeostatic model assessment index (HOMA-IR), quantitative insulin sensitivity check index (QUICKI), A body shape index (ABSI) and VAI were calculated. Multivariable logistic regression analyses with sex, age and each anthropometric parameter (body mass index (BMI) z-score, ABSI, waist-to-height ratio (WHR)) or VAI was performed to predict MetS. Receiver operation curve (ROC) analysis was used to define the optimal VAI cut-off to identify MetS. Multiple regression was performed to predict the BMI z-score and VAI from daily energy intake after adjusting for age and sex. (3) Results. Six hundred and thirty-seven (313 boys and 324 girls) children and adolescents with obesity with median age 11 (interquartile range 10–13) years were included in the analysis. MetS was diagnosed in 79 patients. VAI correlated with BMI, WHR, ABSI, HOMA-IR, QUICKI, systolic blood pressure, low- and high-density lipoprotein cholesterol, triglycerides and triglycerides-to-HDL ratio (p < 0.050). Optimal VAI cut-off (AUC) values to identify MetS were 1.775 (0.774), 1.685 (0.776) and 1.875 (0.797) in the whole population, boys and girls, respectively. Energy intake was positively associated with BMI z-score but no association was found with VAI. (4) Conclusion. VAI is a promising tool to identify MetS in children and adolescents with obesity and should be used in the management of abdominal obesity together with dietary assessment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.