BackgroundThe rapid shallow breathing index (RSBI), which is the ratio between respiratory rate (RR) and tidal volume (VT), is one of the most widely used indices to predict weaning outcome. Whereas the diaphragm plays a fundamental role in generating VT, in the case of diaphragmatic dysfunction the inspiratory accessory muscles may contribute. If this occurs during a weaning trial, delayed weaning failure is likely since the accessory muscles are more fatigable than the diaphragm. Hence, we hypothesised that the traditional RSBI could be implemented by substituting VT with the ultrasonographic evaluation of diaphragmatic displacement (DD). We named the new index the diaphragmatic-RSBI (D-RSBI). The aim of this study was to compare the ability of the traditional RSBI and D-RSBI to predict weaning failure in ready-to-wean patients.MethodsWe performed a prospective observational study. During a T-tube spontaneous breathing trial (SBT) we simultaneously evaluated right hemidiaphragm displacement (i.e., DD) by using M-mode ultrasonography as well as the RSBI. Outcome of the weaning attempt, length of mechanical ventilation, length of intensive care unit and hospital stay, and hospital mortality were recorded. Receiver operator characteristic (ROC) curves were used to evaluate the diagnostic accuracy of D-RSBI and RSBI.ResultsWe enrolled 51 patients requiring mechanical ventilation for more than 48 h who were ready to perform a SBT. Most of the patients, 34 (66 %), were successfully weaned from mechanical ventilation. When considering the 17 patients that failed the weaning attempt, 11 (64 %) had to be reconnected to the ventilator during the SBT, three (18 %) had to be re-intubated within 48 h of extubation, and three (18 %) required non-invasive ventilation support within 48 h of extubation. The areas under the ROC curves for D-RSBI and RSBI were 0.89 and 0.72, respectively (P = 0.006).ConclusionsD-RSBI (RR/DD) was more accurate than traditional RSBI (RR/VT) in predicting the weaning outcome.Trial registrationOur clinical trial was retrospectively registered with ClinicalTrials.gov (identifier: NCT02696018). ClinicalTrials.gov processed our record on 25 February 2016.Electronic supplementary materialThe online version of this article (doi:10.1186/s13054-016-1479-y) contains supplementary material, which is available to authorized users.
Background Biomarkers can be used to detect the presence of endothelial and/or alveolar epithelial injuries in case of ARDS. Angiopoietin-2 (Ang-2), soluble intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion protein-1 (VCAM-1), P-selectin and E-selectin are biomarkers of endothelial injury, whereas the receptor for advanced glycation end-products (RAGE) reflects alveolar epithelial injury. The aims of this study were to evaluate whether the plasma concentration of the above-mentioned biomarkers was different 1) in survivors and non-survivors of COVID-19-related ARDS and 2) in COVID-19-related and classical ARDS. Methods This prospective study was performed in two COVID-19-dedicated Intensive Care Units (ICU) and one non-COVID-19 ICU at Ferrara University Hospital. A cohort of 31 mechanically ventilated patients with COVID-19 ARDS and a cohort of 11 patients with classical ARDS were enrolled. Ang-2, ICAM-1, VCAM-1, P-selectin, E-selectin and RAGE were determined with a bead-based multiplex immunoassay at three time points: inclusion in the study (T1), after 7 ± 2 days (T2) and 14 ± 2 days (T3). The primary outcome was to evaluate the plasma trend of the biomarker levels in survivors and non-survivors. The secondary outcome was to evaluate the differences in respiratory mechanics variables and gas exchanges between survivors and non-survivors. Furthermore, we compared the plasma levels of the biomarkers at T1 in patients with COVID-19-related ARDS and classical ARDS. Results In COVID-19-related ARDS, the plasma levels of Ang-2 and ICAM-1 at T1 were statistically higher in non-survivors than survivors, (p = 0.04 and p = 0.03, respectively), whereas those of P-selectin, E-selectin and RAGE did not differ. Ang-2 and ICAM-1 at T1 were predictors of mortality (AUROC 0.650 and 0.717, respectively). At T1, RAGE and P-selectin levels were higher in classical ARDS than in COVID-19-related ARDS. Ang-2, ICAM-1 and E-selectin were lower in classical ARDS than in COVID-19-related ARDS (all p < 0.001). Conclusions COVID-19 ARDS is characterized by an early pulmonary endothelial injury, as detected by Ang-2 and ICAM-1. COVID-19 ARDS and classical ARDS exhibited a different expression of biomarkers, suggesting different pathological pathways. Trial registration NCT04343053, Date of registration: April 13, 2020
Background: Health-related quality of life (HRQoL) impairment is often reported among COVID-19 ICU survivors, and little is known about their long-term outcomes. We evaluated the HRQoL trajectories between 3 months and 1 year after ICU discharge, the factors influencing these trajectories and the presence of clusters of HRQoL profiles in a population of COVID-19 patients who underwent invasive mechanical ventilation (IMV). Moreover, pathophysiological correlations of residual dyspnea were tested. Methods: We followed up 178 survivors from 16 Italian ICUs up to one year after ICU discharge. HRQoL was investigated through the 15D instrument. Available pulmonary function tests (PFTs) and chest CT scans at 1 year were also collected. A linear mixed-effects model was adopted to identify factors associated with different HRQoL trajectories and a two-step cluster analysis was performed to identify HRQoL clusters. Results: We found that HRQoL increased during the study period, especially for the significant increase of the physical dimensions, while the mental dimensions and dyspnea remained substantially unchanged. Four main 15D profiles were identified: full recovery (47.2%), bad recovery (5.1%) and two partial recovery clusters with mostly physical (9.6%) or mental (38.2%) dimensions affected. Gender, duration of IMV and number of comorbidities significantly influenced HRQoL trajectories. Persistent dyspnea was reported in 58.4% of patients, and weakly, but significantly, correlated with both DLCO and length of IMV. Conclusions: HRQoL impairment is frequent 1 year after ICU discharge, and the lowest recovery is found in the mental dimensions. Persistent dyspnea is often reported and weakly correlated with PFTs alterations. Trial registration: NCT04411459. 15D score 3 months -mean ± SD 0.857 ± 0.133 0.927 ± 0.061 0.800 ± 0.135 0.853 ± 0.114 0.637 ± 0.204 < 0.001 15D score 1 year -mean ± SD 0.880 ± 0.115 0.964 ± 0.033 0.820 ± 0.068 0.866 ± 0.088 0.572 ± 0.112 < 0.001 Mobility -mean ± SD 0.876 ± 0.207 0.963 ± 0.104 0.828 ± 0.191 0.901 ± 0.166 0.375 ± 0.298 < 0.001 Vision -mean ± SD 0.953 ± 0.119 0.992 ± 0.040 0.942 ± 0.108 0.949 ± 0.094 0.681 ± 0.280 < 0.001 Hearing -mean ± SD 0.968 ± 0.098 1.000 ± 0.000 1.000 ± 0.000 0.745 ± 0.135 0.857 ± 0.192 < 0.001 Breathing -mean ± SD 0.746 ± 0.238 0.879 ± 0.154 0.620 ± 0.227 0.753 ± 0.223 0.438 ± 0.238 < 0.001 Sleeping -mean ± SD 0.838 ± 0.238 0.940 ± 0.135 0.716 ± 0.274 0.929 ± 0.142 0.632 ± 0.312 < 0.001 Eating -mean ± SD 0.979 ± 0.102 1.000 ± 0.000 1 .000 ± 0.000 1.000 ± 0.000 0.587 ± 0.221 < 0.001 Speech -mean ± SD 0.980 ± 0.090 0.996 ± 0.032 0.996 ± 0.036 0.948 ± 0.117 0.777 ± 0.276 < 0.001 Excretion -mean ± SD 0.974 ± 0.110 1.000 ± 0.000 1.000 ± 0.000 0.872 ± 0.191 0.720 ± 0.292
Background A large proportion of patients with coronavirus disease 2019 (COVID-19) develop severe respiratory failure requiring admission to the intensive care unit (ICU) and about 80% of them need mechanical ventilation (MV). These patients show great complexity due to multiple organ involvement and a dynamic evolution over time; moreover, few information is available about the risk factors that may contribute to increase the time course of mechanical ventilation. The primary objective of this study is to investigate the risk factors associated with the inability to liberate COVID-19 patients from mechanical ventilation. Due to the complex evolution of the disease, we analyzed both pulmonary variables and occurrence of non-pulmonary complications during mechanical ventilation. The secondary objective of this study was the evaluation of risk factors for ICU mortality. Methods This multicenter prospective observational study enrolled 391 patients from fifteen COVID-19 dedicated Italian ICUs which underwent invasive mechanical ventilation for COVID-19 pneumonia. Clinical and laboratory data, ventilator parameters, occurrence of organ dysfunction, and outcome were recorded. The primary outcome measure was 28 days ventilator-free days and the liberation from MV at 28 days was studied by performing a competing risks regression model on data, according to the method of Fine and Gray; the event death was considered as a competing risk. Results Liberation from mechanical ventilation was achieved in 53.2% of the patients (208/391). Competing risks analysis, considering death as a competing event, demonstrated a decreased sub-hazard ratio for liberation from mechanical ventilation (MV) with increasing age and SOFA score at ICU admission, low values of PaO2/FiO2 ratio during the first 5 days of MV, respiratory system compliance (CRS) lower than 40 mL/cmH2O during the first 5 days of MV, need for renal replacement therapy (RRT), late-onset ventilator-associated pneumonia (VAP), and cardiovascular complications. ICU mortality during the observation period was 36.1% (141/391). Similar results were obtained by the multivariate logistic regression analysis using mortality as a dependent variable. Conclusions Age, SOFA score at ICU admission, CRS, PaO2/FiO2, renal and cardiovascular complications, and late-onset VAP were all independent risk factors for prolonged mechanical ventilation in patients with COVID-19. Trial registration NCT04411459
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.