Cortical dysplastic lesions (CDyLs) are often associated with severe partial epilepsies. We describe the electrographic counterpart of this high degree of epileptogenicity, manifested by continuous or frequent rhythmic epileptogenic discharges recorded directly from CDyLs during intraoperative electrocorticography (ECoG). These ictal or continuous epileptogenic discharges (I/CEDs) assumed one of the following three patterns: (1) repetitive electrographic seizures, (2) repetitive bursting discharges, or (3) continuous or quasicontinuous rhythmic spiking. One or more of these patterns were present in 23 of 34 patients (67%) with intractable partial epilepsy associated with CDyLs, and in only 1 of 40 patients (2.5%) with intractable partial epilepsy associated with other types of structural lesions. I/CEDs were usually spatially restricted, thus contrasting with the more widespread interictal ECoG epileptic activity, and tended to colocalize with the magnetic resonance imaging-defined lesion. Completeness of excision of cortical tissue displaying I/CEDs correlated positively with surgical outcome in patients with medically intractable seizures; i.e., three-fourths of the patients in whom it was entirely excised had favorable surgical outcome; in contrast, uniformly poor outcome was observed in those patients in whom areas containing I/CEDs remained in situ. We conclude that CDyLs are highly and intrinsically epileptogenic, and that intraoperative ECoG identification of this intrinsically epileptogenic dysplastic cortical tissue is crucial to decide the extent of excision for best seizure control.
Resection can alleviate both the seizures and the behavioral and cognitive abnormalities of hypothalamic hamartomas, but complications are frequent.
Ongoing challenges in diagnosing focal cortical dysplasia (FCD) mandate continuous research and consensus agreement to improve disease definition and classification. An International League Against Epilepsy (ILAE) Task Force (TF) reviewed the FCD classification of 2011 to identify existing gaps and provide a timely update. The following methodology was applied to achieve this goal: a survey of published literature indexed with ((Focal Cortical Dysplasia) AND (epilepsy)) between 01/01/2012 and 06/30/2021 (n = 1349) in PubMed identified the knowledge gained since 2012 and new developments in the field. An online survey consulted the ILAE community about the current use of the FCD classification scheme with 367 people answering. The TF performed an iterative clinicopathological and genetic agreement study to objectively measure the diagnostic gap in blood/brain samples from 22 patients suspicious for FCD and submitted to epilepsy surgery. The literature confirmed new molecular-genetic characterizations involving the mechanistic Target Of Rapamycin (mTOR) pathway in FCD type II (FCDII), and SLC35A2 in mild malformations of cortical development (mMCDs) with oligodendroglial hyperplasia (MOGHE). The electro-clinicalimaging phenotypes and surgical outcomes were better defined and validated for FCDII. Little new information was acquired on clinical, histopathological, or genetic characteristics of FCD type I (FCDI) and FCD type III (FCDIII). The survey identified mMCDs, FCDI, and genetic characterization as fields for improvement in an updated classification. Our iterative clinico-pathological and genetic agreement study confirmed the importance of immunohistochemical staining, neuroimaging, and genetic tests to improve the diagnostic yield. The TF proposes to include mMCDs, MOGHE, and "no definite FCD on histopathology" as new categories in the updated FCD classification. The histopathological classification can be further augmented by advanced neuroimaging and genetic studies to comprehensively diagnose FCD subtypes; these different levels should then be integrated into a multi-layered diagnostic scheme. This update may help to foster multidisciplinary efforts toward a better understanding of FCD and the development of novel targeted treatment options.
Summary Epilepsy surgery is an accepted treatment option in patients with medically refractory focal epilepsy. Despite various advances in recording and localization noninvasive and invasive techniques (including electroencephalography (EEG), magnetic resonance imaging (MRI), positron emission tomography (PET), single photon emission computed tomography (SPECT), magnetoencephalography (MEG), subdural grids, depth electrodes, and so on), the seizure outcome following surgical resection remains suboptimal in a significant number of patients. The availability of long‐term outcome data on an increasing number of patients suggests two major temporal patterns of seizure recurrence (early vs. late) that implicate the following two different mechanisms for seizure recurrence: (1) a failure to either define/resect the epileptogenic zone, and (2) the nonstatic nature of epilepsy as a disease through the persistence of proepileptic cortical pathology. We describe the temporal patterns of epilepsy surgery failures and discuss their potential clinical, histopathologic, genetic, and molecular mechanisms. In addition, we review predictors of successful surgical interventions and analyze the natural history of epilepsy following surgical intervention. We hypothesize that the acute/early postoperative failures are due to errors in localizing and/or resecting the epileptic focus, whereas late recurrences are likely due to development/maturation of a new and active epileptic focus (de novo epileptogenesis).
Cortical dysplastic lesions (CDLs) are usually identified by magnetic resonance imaging (MRI). Clinical, electrographic and histologic findings suggest that focal CDLs (FCDLs) are highly epileptogenic, often involve the rolandic cortex, and can present variable degrees of histopathologic abnormalities. An ictal or "ictal-like" bursting pattern of electrographic activity was recorded over dysplastic cortex in 65% of our patients. Resective surgery can eliminate or significantly reduce seizure frequency in many medically intractable patients, depending on lesion location, degree, and extent of histopathologic abnormalities. Best results are achieved when complete or major excision of both the MRI-visible lesion and the cortical areas displaying ictal electrographic activity can be performed. This is more likely when the degree of histopathologic abnormality is mild to moderate or when the lesion is in a temporal lobe. More severe histopathologic abnormalities and central insular or multilobar lesions usually lead to less favorable results: either major excision of the visualized lesion is impractical or the lesion is microscopically more extensive than shown by MRI. Multilobar resection or hemispherectomy for patients with infantile spasms associated with CDLs and for patients with hemimegalencephaly are often associated with dramatic improvement in seizure control. Callosotomy can be performed in selected patients with diffuse CDLs who have intractable drop attacks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.