Despite being technically possible, splitting water to generate hydrogen is still practically unfeasible due mainly to the lack of sustainable and efficient catalysts for the half reactions involved. Herein we report the synthesis of cobalt-embedded nitrogen-rich carbon nanotubes (NRCNTs) that 1) can efficiently electrocatalyze the hydrogen evolution reaction (HER) with activities close to that of Pt and 2) function well under acidic, neutral or basic media alike, allowing them to be coupled with the best available oxygen-evolving catalysts-which also play crucial roles in the overall water-splitting reaction. The materials are synthesized by a simple, easily scalable synthetic route involving thermal treatment of Co(2+) -embedded graphitic carbon nitride derived from inexpensive starting materials (dicyandiamide and CoCl2 ). The materials' efficient catalytic activity is mainly attributed to their nitrogen dopants and concomitant structural defects.
Despite being technically possible, splitting water to generate hydrogen is still practically unfeasible due mainly to the lack of sustainable and efficient catalysts for the half reactions involved. Herein we report the synthesis of cobalt‐embedded nitrogen‐rich carbon nanotubes (NRCNTs) that 1) can efficiently electrocatalyze the hydrogen evolution reaction (HER) with activities close to that of Pt and 2) function well under acidic, neutral or basic media alike, allowing them to be coupled with the best available oxygen‐evolving catalysts—which also play crucial roles in the overall water‐splitting reaction. The materials are synthesized by a simple, easily scalable synthetic route involving thermal treatment of Co2+‐embedded graphitic carbon nitride derived from inexpensive starting materials (dicyandiamide and CoCl2). The materials’ efficient catalytic activity is mainly attributed to their nitrogen dopants and concomitant structural defects.
The synthesis and investigation of the catalytic properties of Au nanoparticles (AuNPs) is an area of intense research. Despite much effort being made to this field, attaining both high catalytic activity and selectivity at the same time remains elusive. Herein a new mild reductive thiolate‐deprotection strategy is reported to prepare nanoporous silica‐supported ultrasmall AuNP catalysts that show very efficient catalytic activity and high selectivity for oxidation reactions.
The use of renewable resources to make various synthetic materials is increasing in order to meet some of our sustainability challenges. Yeast is one of the most common household ingredients, which is cheap and easy to reproduce. Herein we report that yeast cells can be thermally transformed into hollow, core-shell heteroatom-doped carbon microparticles that can effectively electrocatalyze the oxygen reduction and hydrazine oxidation reactions, reactions that are highly pertinent to fuel cells or renewable energy applications. We also show that yeast cell walls, which can easily be separated from the cells, can produce carbon materials with electrocatalytic activity for both reactions, albeit with lower activity compared with the ones obtained from intact yeast cells. The results reveal that the intracellular components of the yeast cells such as proteins, phospholipids, DNAs and RNAs are indirectly responsible for the latter's higher electrocatalytic activity, by providing it with more heteroatom dopants. The synthetic method we report here can serve as a general route for the synthesis of (electro)catalysts using microorganisms as raw materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.