We investigated why treatment of cells with dual aurora A and B kinase inhibitors produces phenotypes identical to inactivation of aurora B. We found that dual aurora kinase inhibitors in fact potently inhibit cellular activities of both kinases, indicating that inactivation of aurora B bypasses aurora A in mitosis. RNAi experiments further established that inactivation of aurora B indeed bypasses the requirement for aurora A and leads to polyploidy. Inactivation of aurora A activates checkpoint kinase BubR1 in an aurora B-dependent manner. Our results thus show that aurora B is responsible for mitotic arrest in the absence of aurora A.
A Spongosorites sp. collected during trawling operations off the southern coast of Australia returned the new alkaloid dragmacidin E (3), the structure of which was secured by detailed spectroscopic analysis. Dragmacidin E (3), and its co-metabolite dragmacidin D (1) have been identified as potent inhibitors of serine-threonine protein phosphatases.
The kinesin Eg5 moves toward minus ends of astral microtubules in early mitosis, switching to plus-end motion in anaphase. Dynein is required for minus-end motion; depletion of TPX2 results in a switch to plus-end motion. On midzone microtubules, Eg5 moves in both directions. Our results explain the redistribution of Eg5 throughout mitosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.