Current success in organ transplantation is dependent upon the use of calcineurin-inhibitor-based immunosuppressive regimens. Unfortunately, current immunotherapy targets molecules with ubiquitous expression resulting in devastating non-immune side effects. T-cell costimulation has been identified as a new potential immunosuppressive target. The best characterized pathway includes CD28, its homologue CTLA4 and their ligands CD80 and CD86. While an immunoglobulin fusion protein construct of CTLA4 suppressed rejection in rodents, it lacked efficacy in primate transplant models. In an attempt to increase the biologic potency of the parent molecule a novel, modified version of CTLA4-Ig, LEA29Y (belatacept), was constructed. Two amino acid substitutions (L104E and A29Y) gave rise to slower dissociation rates for both CD86 and CD80. The increased avidity resulted in a 10-fold increase in potency in vitro and significant prolongation of renal allograft survival in a pre-clinical primate model. The use of immunoselective biologics may provide effective maintenance immunosuppression while avoiding the collateral toxicities associated with conventional immunsuppressants.
We evaluated the ability of neonatal porcine islets to engraft and restore glucose control in pancreatectomized rhesus macaques. Although porcine islets transplanted into nonimmunosuppressed macaques were rapidly rejected by a process consistent with cellular rejection, recipients treated with a CD28-CD154 costimulation blockade regimen achieved sustained insulin independence (median survival, >140 days) without evidence of porcine endogenous retrovirus dissemination. Thus, neonatal porcine islets represent a promising solution to the crucial supply problem in clinical islet transplantation.
HIV-infected humans and SIV-infected rhesus macaques experience a rapid and dramatic loss of mucosal CD4+ T cells that is considered to be a key determinant of AIDS pathogenesis. In this study, we show that nonpathogenic SIV infection of sooty mangabeys (SMs), a natural host species for SIV, is also associated with an early, severe, and persistent depletion of memory CD4+ T cells from the intestinal and respiratory mucosa. Importantly, the kinetics of the loss of mucosal CD4+ T cells in SMs is similar to that of SIVmac239-infected rhesus macaques. Although the nonpathogenic SIV infection of SMs induces the same pattern of mucosal target cell depletion observed during pathogenic HIV/SIV infections, the depletion in SMs occurs in the context of limited local and systemic immune activation and can be reverted if virus replication is suppressed by antiretroviral treatment. These results indicate that a profound depletion of mucosal CD4+ T cells is not sufficient per se to induce loss of mucosal immunity and disease progression during a primate lentiviral infection. We propose that, in the disease-resistant SIV-infected SMs, evolutionary adaptation to both preserve immune function with fewer mucosal CD4+ T cells and attenuate the immune activation that follows acute viral infection protect these animals from progressing to AIDS.
Human immunodeficiency virus type 1 (HIV-1) clade C causes >50% of all HIV infections worldwide, and an estimated 90% of all transmissions occur mucosally with R5 strains. A pathogenic R5 simian-human immunodeficiency virus (SHIV) encoding HIV clade C env is highly desirable to evaluate candidate AIDS vaccines in nonhuman primates. To this end, we generated SHIV-1157i, a molecular clone from a Zambian infant isolate that carries HIV clade C env. SHIV-1157i was adapted by serial passage in five monkeys, three of which developed peripheral CD4 ؉ T-cell depletion. After the first inoculated monkey developed AIDS at week 137 postinoculation, transfer of its infected blood to a naïve animal induced memory T-cell depletion and thrombocytopenia within 3 months in the recipient. In parallel, genomic DNA from the blood donor was amplified to generate the late proviral clone SHIV-1157ipd3. To increase the replicative capacity of SHIV1157ipd3, an extra NF-B binding site was engineered into its 3 long terminal repeat, giving rise to SHIV1157ipd3N4. This virus was exclusively R5 tropic and replicated more potently in rhesus peripheral blood mononuclear cells than SHIV-1157ipd3 in the presence of tumor necrosis factor alpha. Rhesus macaques of Indian and Chinese origin were next inoculated intrarectally with SHIV-1157ipd3N4; this virus replicated vigorously in both sets of monkeys. We conclude that SHIV-1157ipd3N4 is a highly replication-competent, mucosally transmissible R5 SHIV that represents a valuable tool to test candidate AIDS vaccines targeting HIV-1 clade C Env.
The widespread clinical implementation of alloislet transplantation as therapy for type 1 diabetes has been hindered by the lack of suitable islet donors. Pig-to-human islet xenotransplantation is one strategy with potential to alleviate this shortage. Long-term survival of porcine islets has been achieved using antibodies targeting CD154; however, this approach lacks translational potential secondary to associated thromboembolic sequelae. As an alternative strategy targeting the CD40/CD154 T cell activation pathway, we evaluate the ability of a chimeric anti-CD40 monoclonal antibody (Chi220) to protect islet xenografts. Neonatal porcine islets (~50,000 IEQ/kg) were transplanted intraportally into surgically-induced diabetic macaques. Immunosuppression consisted of induction therapy with Chi220 and anti-IL-2 receptor (basiliximab), and maintenance therapy with sirolimus and belatacept (a high-affinity CTLA-4Ig variant). Chi220 effectively promoted xenoislet engraftment and survival; five of six treated recipients achieved insulin-independent normoglycemia (mean length of graft survival 90.8 days, maximum survival of 203 days). No thromboembolic phenomena were noted. CD40 represents a promising alternative to CD154 as a therapeutic target in xenoislet transplantation; other potentially translatable anti-CD40 antibodies warrant further investigation in non-human primate models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.