Phenol is a ubiquitous pollutant and can contaminate natural water resources. Hence, the removal of phenol from wastewater is of significant importance. A series of biological methods were used to remove phenol based on the natural ability of microorganisms to degrade phenol, but the tolerance mechanism of phenol-degraded strains to phenol are not very clear. Morphological observation on Candida tropicalis showed that phenol caused the reactive oxygen species (ROS) accumulation, damaging the mitochondrial and the endoplasmic reticulum. On the basis of transcriptome data and cell wall susceptibility analysis, it was found that C. tropicalis prevented phenol-caused cell damage through improvement of cell wall resistance, maintenance of high-fidelity DNA replication, intracellular protein homeostasis, organelle integrity, and kept the intracellular phenol concentration at a low level through cell-wall remodeling and removal of excess phenol via MDR/MXR transporters. The knowledge obtained will promote the genetic modification of yeast strains in general to tolerate the high concentrations of phenol and improve their efficiency of phenol degradation.
Ebola virus (EBOV) disease outbreaks have resulted in many fatalities, yet no licensed vaccines are available to prevent infection. Recombinant glycoprotein (GP) production may contribute to finding a cure for Ebola virus disease, which is the key candidate protein for vaccine preparation. To explore GP1,2 expression in BmN cells, EBOV-GP1,2 with its native signal peptide or the GP64 signal peptide was cloned and transferred into a normal or gp64 null Bombyx mori nucleopolyhedrovirus (BmNPV) bacmid via transposition. The infectivity of the recombinant bacmids was investigated after transfection, expression and localization of EBOV-GP were investigated, and cell morphological changes were analyzed by TEM. The GP64 signal peptide, but not the GP1,2 native signal peptide, caused GP1,2 localization to the cell membrane, and the differentially localized GP1,2 proteins were cleaved into GP1 and GP2 fragments in BmN cells. GP1,2 expression resulted in dramatic morphological changes in BmN cells in the early stage of infection. However, GP1,2 expression did not rescue GP64 deficiency in BmNPV infection. This study provides a better understanding of GP expression and processing in BmN cells, which may lay a foundation for EBOV-GP expression using the BmNPV baculovirus expression system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.