We describe a new and distinct syndrome involving an interstitial deletion of short arm of chromosome 17 in nine unrelated patients (six males; three females) ranging in age from 3 months to 65 years. In eight patients, a deletion of a portion of band 17p11.2 was associated with a striking similar phenotype including brachycephaly, midface hypoplasia, prognathism, hoarse voice, and speech delay with or without hearing loss, psychomotor and growth retardation, and behavior problems. The one patient with a complete deletion of band 17p11.2 was more severely affected with facial malformations, cleft palate, and major anomalies of cardiac, skeletal, and genitourinary systems; the patient died at age 6 months. Careful cytogenetic analysis including high-resolution techniques will be important for the further identification of patients with this previously unrecognized deletion syndrome.
The microphthalmia with linear skin defects (MLS) syndrome (MIM 309801) is a severe developmental disorder observed in XX individuals with distal Xp segmental monosomy. The phenotype of this syndrome overlaps with that of both Aicardi (MIM 304050) and Goltz (MIM 305600) syndromes, two X-linked dominant, male-lethal disorders. Here we report the clinical, cytogenetic, and molecular characterization of 3 patients with this syndrome. Two of these patients are females with a terminal Xpter-p22.2 deletion. One of these 2 patients had an aborted fetus with anencephaly and the same chromosome abnormality. The third patient is an XX male with Xp/Yp exchange spanning the SRY gene which results in distal Xp monosomy. The extensive clinical variability observed in these patients and the results of the molecular analysis suggest that X-inactivation plays an important role in determining the phenotype of the MLS syndrome. We propose that the MLS, Aicardi, and Goltz syndromes are due to the involvement of the same gene(s), and that different patterns of X-inactivation are responsible for the phenotypic differences observed in these 3 disorders. However, we cannot rule out that each component of the MLS phenotype is caused by deletion of a different gene (a contiguous gene syndrome).
In chronic myelogenous leukemia (CML), the development of chromosomal abnormalities in addition to the Philadelphia chromosome (clonal evolution) is considered by many to be a feature of accelerated phase (AP). Imatinib mesylate (STI571), a selective inhibitor of the Bcr-Abl tyrosine kinase, has significant activity in AP CML. As clonal evolution could allow Bcr-Abl independent proliferation, we analyzed its impact on the outcome of 71 AP patients treated with 600 mg of imatinib mesylate. Fifteen patients had clonal evolution alone (AP-CE), 32 had AP features but no evidence of clonal evolution (HEM-AP), and 24 had AP features plus clonal evolution (HEM-AP + CE). Of the AP-CE patients, 73% had a major cytogenetic response, compared with 31% of the HEM-AP patients (P =.043) and 12.5% of the HEM-AP + CE patients (P =.007). Complete cytogenetic responses were seen in 60% of AP-CE patients, compared with 31% of HEM-AP patients (P =.19) and 8% of HEM-AP + CE patients (P <.001). With mean follow-up of 11.2 months, 35% of all patients failed treatment. The lowest estimated rate of treatment failure at 1 year, 0%, was seen in AP-CE patients, compared with rates of 31% for HEM-AP patients and 69% for HEM-AP + CE patients (P =.0004). After 1 year, 100% of AP-CE patients were still alive, compared with 85% of HEM-AP patients and 67.5% of HEM-AP + CE patients (P =.01). In conclusion, in patients with clonal evolution as the sole criterion of disease acceleration, good responses to imatinib are still possible. Once patients have other signs of acceleration, clonal evolution predicts lower response rates and a shorter time to treatment failure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.