Self-organization of liquid crystalline and crystalline-conjugated materials has been used to create, directly from solution, thin films with structures optimized for use in photodiodes. The discotic liquid crystal hexa-peri-hexabenzocoronene was used in combination with a perylene dye to produce thin films with vertically segregated perylene and hexabenzocoronene, with large interfacial surface area. When incorporated into diode structures, these films show photovoltaic response with external quantum efficiencies of more than 34 percent near 490 nanometers. These efficiencies result from efficient photoinduced charge transfer between the hexabenzocoronene and perylene, as well as from effective transport of charges through vertically segregated perylene and hexabenzocoronene pi systems. This development demonstrates that complex structures can be engineered from novel materials by means of simple solution-processing steps and may enable inexpensive, high-performance, thin-film photovoltaic technology.
In this study the morphology of spin-casted films of polymers blended with [6,6]-phenyl C61-butyric acid methyl ester (PCBM) has been studied. It was found that the lateral structure formation in the films
is favored by rapid solvent evaporation and strong polymer−PCBM repulsion. The formation of homogeneous
films is favored by slow evaporation and weak polymer−PCBM repulsion. The effect of solvent evaporation rate
is the opposite of what is found for spin-casting polymer−polymer blends. The results can be explained by the
kinetics of phase separation and the phase behavior involving limited solubility and crystallization of PCBM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.