We searched for linkage disequilibrium (LD) in 137 triads with dyslexia, using markers that span the most-replicated dyslexia susceptibility region on 6p21-p22, and found association between the disease and markers within the VMP/DCDC2/KAAG1 locus. Detailed refinement of the LD region, involving sequencing and genotyping of additional markers, showed significant association within DCDC2 in single-marker and haplotype analyses. The association appeared to be strongest in severely affected patients. In a second step, the study was extended to include an independent sample of 239 triads with dyslexia, in which the association--in particular, with the severe phenotype of dyslexia--was confirmed. Our expression data showed that DCDC2, which contains a doublecortin homology domain that is possibly involved in cortical neuron migration, is expressed in the fetal and adult CNS, which--together with the hypothesized protein function--is in accordance with findings in dyslexic patients with abnormal neuronal migration and maturation.
SummaryDyslexia is a complex gene-environment disorder with poorly understood etiology that affects about 5% of school-age children. Dyslexia occurs in all languages and is associated with a high level of social and psychological morbidity for the individual and their family; approximately 40-50% have persistent disability into adulthood. The core symptoms are word reading and spelling deficits, but several other cognitive components influence the core phenotype.A broad spectrum of dyslexia related phenotypes, including phonological decoding, phoneme awareness, orthographic processing, short-term memory, rapid naming and basic mathematical abilities, were investigated in large sample of 287 German dyslexia families. We explored the interrelationship between the component phenotypes using correlation and principal component analyses (PCA). In addition, we estimated familiality for phenotypes as well as for the factors suggested by PCA.The correlation between the component phenotypes varied between − 0.1 and 0.7. The PCA resulted in three factors: a general dyslexia factor, a speed of processing factor and a mathematical abilities factor. The familiality estimates of single components and factors ranged between 0.25 and 0.63.Instead of analyzing single dyslexia-related components, multivariate analyses including factor analytic approaches may help in the identification of susceptibility genes.
Dyslexia is a complex disorder manifested by difficulties in learning to read and spell despite conventional instruction, adequate intelligence and sociocultural opportunity. It is among the most common neurodevelopmental disorders with a prevalence of 5-12%. The dyslexia susceptibility locus 2 on chromosome 6p21-p22 is one of the best-replicated linkage regions in dyslexia. On the basis of systematic linkage disequilibrium studies, the doublecortin domain containing protein 2 gene (DCDC2) was identified as a strong candidate gene in this region. Data from a US study have suggested a complex deletion/compound short tandem repeat (STR) polymorphism in intron 2 of DCDC2 as the causative mutation. In this study, we analyzed this polymorphism in 396 German dyslexia trios which included 376 trios previously providing strong support for the DCDC2 locus. We observed no significant deviation from random transmission, neither for the deletion nor for the alleles of the compound STR. We also did not find the deletion or any of the STR alleles to be in linkage disequilibrium with the 2-marker haplotype, which was associated with dyslexia in our sample. We thus conclude that the causative variant/s in DCDC2 conferring susceptibility to dyslexia in our sample remain/s to be identified.
Objective: Several studies have demonstrated a genetic component for dyslexia. However, both segregation and linkage analyses show contradictory results pointing at the necessity of an optimal ascertainment scheme for molecular genetic studies. Previously, we have argued that the single proband sib pair design (SPSP) would be optimal. The aims of this paper therefore are to demonstrate the practicability of the SPSP design and the estimation of recurrence risks for reading and writing. Methods: We assessed spelling and reading in a family sample ascertained through the SPSP design. 287 families with at least two siblings and their parents were recruited. At least one child was affected with spelling disorder according to a one standard deviation (1SD) discrepancy criterion. Results: Mean values for probands and their siblings were different for both the spelling and the reading phenotype. For the probands, variances of the phenotype spelling were smaller. These effects became stronger with more extreme selection criteria. Both siblings fulfilled the 1SD criterion for spelling and reading in 60.3 and 28.9% of the families, respectively, indicating a low cost efficiency of the double proband sib pair approach. A recurrence risk of 4.52 (CI: 4.07–4.93) was obtained for spelling when the 1SD criterion was applied to both siblings. Recurrence risk estimates were similar for reading. Conclusion: The study demonstrates the suitability of the SPSP design for genetic analysis of dyslexia. The recurrence risk estimates may be used for determining sample sizes in gene mapping studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.