BackgroundDiet has a major influence on the composition of the gut microbiota, whose importance for gut health and overall well-being is increasingly recognized. Knowledge is limited regarding health implications, including effects on the faecal microbiota, of feeding a diet with high content of red meat to dogs, despite some owners’ apparent preference to do so. The aim of this study was to evaluate how a diet change from commercial dry food to one with a high content of boiled minced beef and vice versa influenced the faecal microbiota, and short chain fatty acid profile in healthy, adult, client-owned dogs.ResultsThe diet change influenced the faecal microbiota composition and diversity (Shannon diversity index). The most abundant OTUs in samples of dogs fed the dry food and high minced beef were affiliated with the species Faecalibacterium prausnitzii and Clostridia hiranonis respectively. The high minced beef diet apparently also influenced the short chain fatty acid profile, with increased isovaleric acid, as well as an increase in faecal pH. These effects were reversed when the commercial dry food was reintroduced in weeks 6 and 7.ConclusionsResults of this study can aid in the understanding of how diet changes influence the faecal microbiota and metabolite content on a short-term basis. Long-term studies are required to investigate potential implications for canine gut and general health.Electronic supplementary materialThe online version of this article (doi:10.1186/s12917-017-1073-9) contains supplementary material, which is available to authorized users.
Our results support that age has a significant effect on several hematologic and serum biochemical values in puppies, warranting age-specific RI.
OBJECTIVES: To evaluate the effect of a probiotic product in acute self-limiting gastroenteritis in dogs.METHODS: Thirty-six dogs suffering from acute diarrhoea or acute diarrhoea and vomiting were included in the study. The trial was performed as a randomised, double blind and single centre study with stratifi ed parallel group design. The animals were allocated to equal looking probiotic or placebo treatment by block randomisation with a fi xed block size of six. The probiotic cocktail consisted of thermo-stabilised Lactobacillus acidophilus and live strains of Pediococcus acidilactici, Bacillus subtilis, Bacillus licheniformis and Lactobacillus farciminis.RESULTS: The time from initiation of treatment to the last abnormal stools was found to be signifi cantly shorter (P = 0·04) in the probiotic group compared to placebo group, the mean time was 1·3 days and 2·2 days, respectively. The two groups were found nearly equal with regard to time from start of treatment to the last vomiting episode.CLINICAL SIGNIFICANCE: The probiotic tested may reduce the convalescence time in acute self-limiting diarrhoea in dogs.
The effect of oral amoxicillin treatment on fecal microbiota of seven healthy adult dogs was determined with a focus on the prevalence of bacterial antibiotic resistance and changes in predominant bacterial populations. After 4-7 days of exposure to amoxicillin, fecal Escherichia coli expressed resistance to multiple antibiotics when compared with the pre-exposure situation. Two weeks postexposure, the susceptibility pattern had returned to pre-exposure levels in most dogs. A shift in bacterial populations was confirmed by molecular fingerprinting of fecal bacterial populations using denaturing gradient gel electrophoresis (PCR-DGGE) of the 16S V3 rRNA gene region. Much of the variation in DGGE profiles could be attributed to dog-specific factors. However, permutation tests indicated that amoxicillin exposure significantly affected the DGGE profiles after controlling for the dog effect (P=0.02), and pre-exposure samples were clearly separated from postexposure samples. Sequence analysis of DGGE bands and real-time PCR quantification indicated that amoxicillin exposure caused a shift in the intestinal ecological balance toward a Gram-negative microbiota including resistant species in the family Enterobacteriaceae.
BackgroundPrevious research has indicated a breed predisposition to gastric carcinoma in dogs. However, results to date are inconsistent since several studies have failed to prove such a predisposition. Better knowledge of breeds at risk could facilitate early detection of gastric carcinoma in dogs. The aim of the study was to retrospectively investigate the proportion and possible breed predisposition to canine gastric carcinoma using the Norwegian Canine Cancer Register for calculations of proportional morbidity ratios (PMRs) for the period 1998–2009.ResultsHistologically verified tumours recorded in the Norwegian Canine Cancer Register were studied (n = 19,715). A total of 31 (0.16%) cases of canine gastric carcinomas were identified. The median age of affected dogs was 10 years. The most commonly reported clinical signs were vomiting, anorexia, and weight loss. Males had significantly higher odds of gastric carcinoma than females (P = 0.02). The PMR with 95% confidence interval (CI) was calculated for each breed, and a breed predisposition was identified. Individuals of the breeds Tervuren (PMR 56.1), Bouvier des Flandres (PMR 36.5), Groenendael (PMR 34.5), Collie (PMR 26.1), Standard poodle (PMR 7.6), and Norwegian elkhound (PMR 6.1) had a significantly increased risk of developing gastric carcinoma.Discussion and conclusionThe proportion of cases of gastric carcinoma recorded in the Norwegian Canine Cancer Register was found to be 0.16%, and a breed predisposition was identified. The breed predisposition observed in the current study indicates a genetic susceptibility to gastric carcinoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.