Liability to alcohol dependence (AD) is heritable, but little is known about its complex polygenic architecture or its genetic relationship with other disorders. To discover loci associated with AD and characterize the relationship between AD and other psychiatric and behavioral outcomes, we carried out the largest GWAS to date of DSM-IV diagnosed AD. Genome-wide data on 14,904 individuals with AD and 37,944 controls from 28 case/control and family-based studies were meta-analyzed, stratified by genetic ancestry (European, N = 46,568; African; N = 6,280). Independent, genome-wide significant effects of different ADH1B variants were identified in European (rs1229984; p = 9.8E-13) and African ancestries (rs2066702; p = 2.2E-9). Significant genetic correlations were observed with 17 phenotypes, including schizophrenia, ADHD, depression, and use of cigarettes and cannabis. The genetic underpinnings of AD only partially overlap with those for alcohol consumption, underscoring the genetic distinction between pathological and non-pathological drinking behaviors.
BACKGROUND Blast-related traumatic brain injuries have been common in the Iraq and Afghanistan wars, but fundamental questions about the nature of these injuries remain unanswered. METHODS We tested the hypothesis that blast-related traumatic brain injury causes traumatic axonal injury, using diffusion tensor imaging (DTI), an advanced form of magnetic resonance imaging that is sensitive to axonal injury. The subjects were 63 U.S. military personnel who had a clinical diagnosis of mild, uncomplicated traumatic brain injury. They were evacuated from the field to the Landstuhl Regional Medical Center in Landstuhl, Germany, where they underwent DTI scanning within 90 days after the injury. All the subjects had primary blast exposure plus another, blast-related mechanism of injury (e.g., being struck by a blunt object or injured in a fall or motor vehicle crash). Controls consisted of 21 military personnel who had blast exposure and other injuries but no clinical diagnosis of traumatic brain injury. RESULTS Abnormalities revealed on DTI were consistent with traumatic axonal injury in many of the subjects with traumatic brain injury. None had detectible intracranial injury on computed tomography. As compared with DTI scans in controls, the scans in the subjects with traumatic brain injury showed marked abnormalities in the middle cerebellar peduncles (P<0.001), in cingulum bundles (P = 0.002), and in the right orbitofrontal white matter (P = 0.007). In 18 of the 63 subjects with traumatic brain injury, a significantly greater number of abnormalities were found on DTI than would be expected by chance (P<0.001). Follow-up DTI scans in 47 subjects with traumatic brain injury 6 to 12 months after enrollment showed persistent abnormalities that were consistent with evolving injuries. CONCLUSIONS DTI findings in U.S. military personnel support the hypothesis that blast-related mild traumatic brain injury can involve axonal injury. However, the contribution of primary blast exposure as compared with that of other types of injury could not be determined directly, since none of the subjects with traumatic brain injury had isolated primary blast injury. Furthermore, many of these subjects did not have abnormalities on DTI. Thus, traumatic brain injury remains a clinical diagnosis. (Funded by the Congressionally Directed Medical Research Program and the National Institutes of Health; ClinicalTrials.gov number, NCT00785304.)
Context Previous studies have reported that early initiation of cannabis (marijuana) use is a significant risk factor for other drug use and drug-related problems. Objective To examine whether the association between early cannabis use and subsequent progression to use of other drugs and drug abuse/dependence persists after controlling for genetic and shared environmental influences. Design Cross-sectional survey conducted in 1996-2000 among an Australian national volunteer sample of 311 young adult (median age, 30 years) monozygotic and dizygotic same-sex twin pairs discordant for early cannabis use (before age 17 years). Main Outcome Measures Self-reported subsequent nonmedical use of prescription sedatives, hallucinogens, cocaine/other stimulants, and opioids; abuse or dependence on these drugs (including cannabis abuse/dependence); and alcohol dependence. Results Individuals who used cannabis by age 17 years had odds of other drug use, alcohol dependence, and drug abuse/dependence that were 2.1 to 5.2 times higher than those of their co-twin, who did not use cannabis before age 17 years. Controlling for known risk factors (early-onset alcohol or tobacco use, parental conflict/ separation, childhood sexual abuse, conduct disorder, major depression, and social anxiety) had only negligible effects on these results. These associations did not differ significantly between monozygotic and dizygotic twins. Conclusions Associations between early cannabis use and later drug use and abuse/ dependence cannot solely be explained by common predisposing genetic or shared environmental factors. The association may arise from the effects of the peer and social context within which cannabis is used and obtained. In particular, early access to and use of cannabis may reduce perceived barriers against the use of other illegal drugs and provide access to these drugs.
The risk of posttraumatic stress disorder (PTSD) following trauma is heritable, but robust common variants have yet to be identified. In a multi-ethnic cohort including over 30,000 PTSD cases and 170,000 controls we conduct a genome-wide association study of PTSD. We demonstrate SNP-based heritability estimates of 5–20%, varying by sex. Three genome-wide significant loci are identified, 2 in European and 1 in African-ancestry analyses. Analyses stratified by sex implicate 3 additional loci in men. Along with other novel genes and non-coding RNAs, a Parkinson’s disease gene involved in dopamine regulation, PARK2, is associated with PTSD. Finally, we demonstrate that polygenic risk for PTSD is significantly predictive of re-experiencing symptoms in the Million Veteran Program dataset, although specific loci did not replicate. These results demonstrate the role of genetic variation in the biology of risk for PTSD and highlight the necessity of conducting sex-stratified analyses and expanding GWAS beyond European ancestry populations.
Summary Background Variation in liability to cannabis use disorder has a strong genetic component (estimated twin and family heritability about 50–70%) and is associated with negative outcomes, including increased risk of psychopathology. The aim of the study was to conduct a large genome-wide association study (GWAS) to identify novel genetic variants associated with cannabis use disorder. Methods To conduct this GWAS meta-analysis of cannabis use disorder and identify associations with genetic loci, we used samples from the Psychiatric Genomics Consortium Substance Use Disorders working group, iPSYCH, and deCODE (20 916 case samples, 363 116 control samples in total), contrasting cannabis use disorder cases with controls. To examine the genetic overlap between cannabis use disorder and 22 traits of interest (chosen because of previously published phenotypic correlations [eg, psychiatric disorders] or hypothesised associations [eg, chronotype] with cannabis use disorder), we used linkage disequilibrium score regression to calculate genetic correlations. Findings We identified two genome-wide significant loci: a novel chromosome 7 locus ( FOXP2 , lead single-nucleotide polymorphism [SNP] rs7783012; odds ratio [OR] 1·11, 95% CI 1·07–1·15, p=1·84 × 10 −9 ) and the previously identified chromosome 8 locus (near CHRNA2 and EPHX2 , lead SNP rs4732724; OR 0·89, 95% CI 0·86–0·93, p=6·46 × 10 −9 ). Cannabis use disorder and cannabis use were genetically correlated ( r g 0·50, p=1·50 × 10 −21 ), but they showed significantly different genetic correlations with 12 of the 22 traits we tested, suggesting at least partially different genetic underpinnings of cannabis use and cannabis use disorder. Cannabis use disorder was positively genetically correlated with other psychopathology, including ADHD, major depression, and schizophrenia. Interpretation These findings support the theory that cannabis use disorder has shared genetic liability with other psychopathology, and there is a distinction between genetic liability to cannabis use and cannabis use disorder. Funding National Institute of Mental Health; National Institute on Alcohol Abuse and Alcoholism; National Institute on Drug Abuse; Center for Genomics and Personalized Medicine and the Centre for Integrative Sequencing; The European Commission, Horizon 2020; National Institute of Child Health and Human Development; Health Research Council of New Zealand; National Institute on Aging; Wellcome Trust Case Control Consortium; UK Research and Innovation Medical Research Council (UKRI MRC); The Brain & Behavior Research Foundation; National Institute on Deafness and Other Communication Disorders; Substance Abuse and Mental Health Serv...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.