BackgroundThe growth and recurrence of several cancers appear to be driven by a population of cancer stem cells (CSCs). Glioblastoma, the most common primary brain tumor, is invariably fatal, with a median survival of approximately 1 year. Although experimental data have suggested the importance of CSCs, few data exist regarding the potential relevance and importance of these cells in a clinical setting.MethodsWe here present the first seven patients treated with a dendritic cell (DC)-based vaccine targeting CSCs in a solid tumor. Brain tumor biopsies were dissociated into single-cell suspensions, and autologous CSCs were expanded in vitro as tumorspheres. From these, CSC-mRNA was amplified and transfected into monocyte-derived autologous DCs. The DCs were aliquoted to 9–18 vaccines containing 107 cells each. These vaccines were injected intradermally at specified intervals after the patients had received a standard 6-week course of post-operative radio-chemotherapy. The study was registered with the ClinicalTrials.gov identifier NCT00846456.ResultsAutologous CSC cultures were established from ten out of eleven tumors. High-quality RNA was isolated, and mRNA was amplified in all cases. Seven patients were able to be weaned from corticosteroids to receive DC immunotherapy. An immune response induced by vaccination was identified in all seven patients. No patients developed adverse autoimmune events or other side effects. Compared to matched controls, progression-free survival was 2.9 times longer in vaccinated patients (median 694 vs. 236 days, p = 0.0018, log-rank test).ConclusionThese findings suggest that vaccination against glioblastoma stem cells is safe, well-tolerated, and may prolong progression-free survival.Electronic supplementary materialThe online version of this article (doi:10.1007/s00262-013-1453-3) contains supplementary material, which is available to authorized users.
Innate immunity is considered to initiate adaptive antitumor responses. We demonstrate that monoclonal CD8 T lymphocytes reactive to tumor Ag P1A on P815 mastocytoma cells provide essential “help” to NK cells for rejection of P1A-deficient tumors. RAG-deficient mice have normal NK cells but do not reject either tumor. Reconstitution of these mice with P1A-specific T cells conferred resistance to both P1A-expressing and -deficient tumor cells provided they were present at the same site. Elimination of Ag-negative tumor variants required both activated T and NK cells. Gene expression profiling of NK cells infiltrating P1A-positive tumors in mice with specific CD8 T cells demonstrated an activated effector phenotype. However, CD8 T cell help to NK cells appeared ineffective for P1A-negative variants separated from the P1A-positive tumor. Local tumor Ag-specific T cell-NK cell collaboration results in the elimination of tumor cells whether they express or not the T cell tumor Ag epitope, thus containing the emergence of tumor escape variants before metastasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.