Defects in death receptor-mediated apoptosis have been linked to cancer and autoimmune disease in humans.The in vivo role of caspase 8, a component of this pathway, has eluded analysis in postnatal tissues because of the lack of an appropriate animal model. Targeted disruption of caspase 8 is lethal in utero. We generated mice with a targeted caspase 8 mutation that is restricted to the T-cell lineage. Despite normal thymocyte development in the absence of caspase 8, we observed a marked decrease in the number of peripheral T-cells and impaired T-cell response ex vivo to activation stimuli. caspase 8 ablation protected thymocytes and activated T-cells from CD95 ligand but not anti-CD3-induced apoptosis, or apoptosis activated by agents that are known to act through the mitochondria. caspase 8 mutant mice were unable to mount an immune response to viral infection, indicating that caspase 8 deletion in T-cells leads to immunodeficiency. These findings identify an essential, cell-stage-specific role for caspase 8 in T-cell homeostasis and T-cell-mediated immunity. This is consistent with the recent identification of caspase 8 mutations in human immunodeficiency.
The Drosophila melanogaster warts/lats tumour suppressor has two mammalian counterparts LATS1/Warts-1 and LATS2/Kpm. Here, we show that mammalian Lats orthologues exhibit distinct expression profiles according to germ cell layer origin. Lats2 À/À embryos show overgrowth in restricted tissues of mesodermal lineage; however, lethality ultimately ensues on or before embryonic day 12.5 preceded by defective proliferation. Lats2 À/À mouse embryonic fibroblasts (MEFs) acquire growth advantages and display a profound defect in contact inhibition of growth, yet exhibit defective cytokinesis. Lats2 À/À embryos and MEFs display centrosome amplification and genomic instability. Lats2 localizes to centrosomes and overexpression of Lats2 suppresses centrosome overduplication induced in wild-type MEFs and reverses centrosome amplification inherent in Lats2 À/À MEFs. These findings indicate an essential role of Lats2 in the integrity of processes that govern centrosome duplication, maintenance of mitotic fidelity and genomic stability.
Mus81-Eme1 endonuclease has been implicated in the rescue of stalled replication forks and the resolution of meiotic recombination intermediates in yeast. We used gene targeting to study the physiological requirements of Mus81 in mammals. Mus81-/- mice are viable and fertile, which indicates that mammalian Mus81 is not essential for recombination processes associated with meiosis. Mus81-deficient mice and cells were hypersensitive to the DNA cross-linking agent mitomycin C but not to gamma-irradiation. Remarkably, both homozygous Mus81-/- and heterozygous Mus81+/- mice exhibited a similar susceptibility to spontaneous chromosomal damage and a profound and equivalent predisposition to lymphomas and other cancers. These studies demonstrate a critical role for the proper biallelic expression of the mammalian Mus81 in the maintenance of genomic integrity and tumor suppression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.