Background:In this prospective cohort study of Caucasian mothers and children in Krakow, Poland, we evaluated the role of prenatal exposure to urban air pollutants in the pathogenesis of neurobehavioral disorders. oBjectives: The objective of this study was to investigate the relationship between prenatal polycyclic aromatic hydrocarbon (PAH) exposure and child intelligence at 5 years of age, controlling for potential confounders suspected to play a role in neurodevelopment. Methods: A cohort of pregnant, healthy, nonsmoking women was enrolled in Krakow, Poland, between 2001 and 2006. During pregnancy, participants were invited to complete a questionnaire and undergo 48-hr personal air monitoring to estimate their babies' exposure, and to provide a blood sample and/or a cord blood sample at the time of delivery. Two hundred fourteen children were followed through 5 years of age, when their nonverbal reasoning ability was assessed using the Raven Coloured Progressive Matrices (RCPM). results: We found that higher (above the median of 17.96 ng/m 3 ) prenatal exposure to airborne PAHs (range, 1.8-272.2 ng/m 3 ) was associated with decreased RCPM scores at 5 years of age, after adjusting for potential confounding variables (n = 214). Further adjusting for maternal intelligence, lead, or dietary PAHs did not alter this association. The reduction in RCPM score associated with high airborne PAH exposure corresponded to an estimated average decrease of 3.8 IQ points. conclusions: These results suggest that prenatal exposure to airborne PAHs adversely affects children's cognitive development by 5 years of age, with potential implications for school performance. They are consistent with a recent finding in a parallel cohort in New York City.
The main goal of the study was to assess the effect of exclusive breastfeeding on the neurodevelopment of children over a seven-year follow-up period and to test the hypothesis that the observed cognitive gain in breastfed children in the first years of life is a strong predictor of their cognitive development trajectory, which may be continued in later life. The analysis is based on data from the seven-year follow-up of 468 term babies (>36 weeks of gestation) born to non-smoking mothers participating in an ongoing prospective cohort study. The cognitive function of children was assessed by psychometric tests performed 5 times at regular intervals from infancy through the preschool age. The study included valid neurodevelopmental assessment of the children – 443 participants were evaluated least twice, 425 – three times and 307 five times in the follow-up period. The association between the cognitive achievements of preschool age children and exclusive breastfeeding of various duration was performed using the GEE (General Estimation Equation) longitudinal model, adjusted for major confounders such as maternal education, gender, parity, and weight gain in pregnancy. Children breastfed exclusively for up to 3 months had IQs that were on average 2.1 points higher compared to the others (95%CI: 0.24 – 3.9); children breastfed for 4 – 6 months scored higher by 2.6 points (95%CI: 0.87 – 4.27); and the benefit for children breastfed even longer (>6 months) increased by 3.8 points (95%CI: 2.11 – 5.45). Other predictors were maternal education, gender of the child, having an older sibling, and weight gain during pregnancy. The results of the study support the WHO expert recommendations on exclusive breastfeeding for six months; moreover, they provide evidence that even a shorter duration of exclusive breastfeeding in early infancy produces beneficial effects on the cognitive development of children. The breastfeeding-related IQ gain observed already at the age of 1 was sustained through preschool age and the difference in terms of IQ score between breastfed children and the reference group (mixed breastfeeding) held constant over the whole preschool period.
ObjectivesCurrent understanding on health effects of long-term polycyclic aromatic hydrocarbon (PAH) exposure is limited by lack of data on time-varying nature of the pollutants at an individual level. In a cohort of pregnant women in Krakow, Poland, we examined the contribution of temporal, spatial, and behavioral factors to prenatal exposure to airborne PAHs within each trimester and developed a predictive model of PAH exposure over the entire gestational period.MethodsWe monitored nonsmoking pregnant women (n = 341) for their personal exposure to pyrene and eight carcinogenic PAHs—benz[a]anthracene, chrysene/isochrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene [B(a)P], indeno[1,2,3-c,d]pyrene, dibenz[a,h]anthracene, and benzo[g,h,i]perylene—during their second trimester for a consecutive 48-hr period. In a subset (n = 78), we monitored indoor and outdoor levels simultaneously with the personal monitoring during the second trimester with an identical monitor. The subset of women was also monitored for personal exposure for a 48-hr period during each trimester. We repeatedly administered a questionnaire on health history, lifestyle, and home environment.ResultsThe observed personal, indoor, and outdoor B(a)P levels we observed in Krakow far exceed the recommended Swedish guideline value for B(a)P of 0.1 ng/m3. Based on simultaneously monitored levels, the outdoor PAH level alone accounts for 93% of total variability in personal exposure during the heating season. Living near the Krakow bus depot, a crossroad, and the city center and time spent outdoors or commuting were not associated with higher personal exposure. During the nonheating season only, a 1-hr increase in environmental tobacco smoke (ETS) exposure was associated with a 10–16% increase in personal exposure to the nine measured PAHs. A 1°C decrease in ambient temperature was associated with a 3–5% increase in exposure to benz[a]anthracene, benzo[k]fluoranthene, and dibenz[a,h]anthracene, after accounting for the outdoor concentration. A random effects model demonstrated that mean personal exposure at a given gestational period depends on the season, residence location, and ETS.ConclusionConsidering that most women reported spending < 3 hr/day outdoors, most women in the study were exposed to outdoor-originating PAHs within the indoor setting. Cross-sectional, longitudinal monitoring supplemented with questionnaire data allowed development of a gestation-length model of individual-level exposure with high precision and validity. These results are generalizable to other nonsmoking pregnant women in similar exposure settings and support reduction of exposure to protect the developing fetus.
Background: As there is a scarcity of evidence on potential hazards and preventive factors for infantile eczema operating in the prenatal period, the main goal of this study was to assess the role of prenatal exposure to fine particulate matter and environmental tobacco smoke (ETS) in the occurrence of infant eczema jointly with the possible modulating effect of maternal fish consumption. Methods: The study sample consisted of 469 women enrolled during pregnancy, who gave birth to term babies (>36 weeks of gestation). Among all pregnant women recruited, personal measurements of fine particulate matter (PM2.5) were performed over 48 h in the second trimester of pregnancy. After delivery, every 3 months in the first year of the newborn’s life, a detailed, standardized, face-to-face interview was administered to each mother, in the process of which a trained interviewer recorded any history of infantile eczema and data on potential environmental hazards. The estimated risk of eczema related to higher prenatal exposure to fine particulate matter (PM2.5 >53.0 µg/m3) and postnatal ETS as well as the protective effect of maternal fish intake were adjusted for potential confounders in a multivariable logistic regression model. Results: While the separate effects of higher prenatal PM2.5 and postnatal ETS exposure were not statistically significant, their joint effect appeared to have a significant influence on the occurrence of infantile eczema [odds ratio 2.39, 95% confidence interval (CI) 1.10–5.18]. With maternal fish intake of more than 205 g/week, the risk of eczema decreased by 43% (odds ratio 0.57, 95% CI 0.35–0.93). The incidence rate ratio (IRR) for eczema symptoms, estimated from the Poisson regression model, was increased with both higher exposure to prenatal PM2.5 and postnatal ETS (IRR 1.55, 95% CI 0.99–2.44) and in children of atopic mothers (IRR 1.35, 95% CI 1.04–1.75) but was lower in girls (IRR 0.78, 95% CI 0.61–1.00). The observed preventive effect of fish consumption on the frequency of eczema symptoms was consistent with the results of the logistic analysis (IRR 0.72, 95% CI 0.52–0.99). Conclusions: The findings indicate that higher prenatal exposure to fine particulate matter combined with postnatal exposure to ETS may increase the risk of infant eczema, while maternal fish intake during pregnancy may reduce the risk of infantile eczema.
Over the last decades many epidemiologic studies considered the morbidity patterns for respiratory diseases and lung function of children in the context of ambient air pollution usually measured in the postnatal period. The main purpose of this study is to assess the impact of prenatal exposure to fine particulate matter (PM2.5) on the recurrent broncho-pulmonary infections in early childhood. The study included 214 children who had measurements of personal prenatal PM2.5 exposure and regularly collected data on the occurrence of acute bronchitis and pneumonia diagnosed by a physician from birth over the seven-year follow-up. The effect of prenatal exposure to PM2.5 was adjusted in the multivariable logistic models for potential confounders, such as prenatal and postnatal ETS (environmental tobacco smoke), city residence area as a proxy of postnatal urban exposure, children’s sensitization to domestic aeroallergens, and asthma. In the subgroup of children with available PM2.5 indoor levels, the effect of prenatal exposure was additionally adjusted for indoor exposure as well. The adjusted odds ratio (OR) for incidence of recurrent broncho-pulmonary infections (five or more spells of bronchitis and/or pneumonia) recorded in the follow-up significantly correlated in a dose-response manner with the prenatal PM2.5 level (OR = 2.44, 95%CI: 1.12 – 5.36). In conclusion, the study suggests that prenatal exposure to PM2.5 increases susceptibility to respiratory infections and may program respiratory morbidity in early childhood. The study also provides evidence that the target value of 20 μg/m3 for the 24-hour mean level of PM2.5 protects unborn babies better than earlier established EPA guidelines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.