After culture in interleukin (IL)-2, natural killer (NK) cells acquire an increased capability of mediating non–major histocompatibility complex (MHC)–restricted tumor cell lysis. This may reflect, at least in part, the de novo expression by NK cells of triggering receptors involved in cytolysis. In this study we identified a novel 44-kD surface molecule (NKp44) that is absent in freshly isolated peripheral blood lymphocytes but is progressively expressed by all NK cells in vitro after culture in IL-2. Different from other markers of cell activation such as CD69 or VLA.2, NKp44 is absent in activated T lymphocytes or T cell clones. Since NKp44 was not detected in any of the other cell lineages analyzed, it appears as the first marker specific for activated human NK cells. Monoclonal antibody (mAb)–mediated cross-linking of NKp44 in cloned NK cells resulted in strong activation of target cell lysis in a redirected killing assay. This data indicated that NKp44 can mediate triggering of NK cell cytotoxicity. mAb-mediated masking of NKp44 resulted in partial inhibition of cytolytic activity against certain (FcγR-negative) NK-susceptible target cells. This inhibition was greatly increased by the simultaneous masking of p46, another recently identified NK-specific triggering surface molecule. These data strongly suggest that NKp44 functions as a triggering receptor selectively expressed by activated NK cells that, together with p46, may be involved in the process of non-MHC-restricted lysis. Finally, we show that p46 and NKp44 are coupled to the intracytoplasmic transduction machinery via the association with CD3ζ or KARAP/DAP12, respectively; these associated molecules are tyrosine phosphorylated upon NK cell stimulation.
Two major receptors involved in human natural cytotoxicity, NKp46 and NKp44, have recently been identified. However, experimental evidence suggested the existence of additional such receptor(s). In this study, by the generation of monoclonal antibodies (mAbs), we identified NKp30, a novel 30-kD triggering receptor selectively expressed by all resting and activated human natural killer (NK) cells. Although mAb-mediated cross-linking of NKp30 induces strong NK cell activation, mAb-mediated masking inhibits the NK cytotoxicity against normal or tumor target cells. NKp30 cooperates with NKp46 and/or NKp44 in the induction of NK-mediated cytotoxicity against the majority of target cells, whereas it represents the major triggering receptor in the killing of certain tumors. This novel receptor is associated with CD3ζ chains that become tyrosine phosphorylated upon sodium pervanadate treatment of NK cells. Molecular cloning of NKp30 cDNA revealed a member of the immunoglobulin superfamily, characterized by a single V-type domain and a charged residue in the transmembrane portion. Moreover, we show that NKp30 is encoded by the previously identified 1C7 gene, for which the function and the cellular distribution of the putative product were not identified in previous studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.