The aims of this study were to examine in young soccer players (a) the effect of varying the number of players on exercise intensity (EI) and technical actions during small-sided games (SSGs), (b) the reliability of EI and technical actions, and (c) the influence of the players' maturation on EI and involvements with the ball (IWBs). Sixteen male soccer players (mean ± SD; age 13.5 ± 0.7 years, height 164 ± 7 cm, and weight 51.8 ± 8 kg) completed 2 bouts of 3 vs. 3 (SSG3), 4 vs. 4 (SSG4), and 5 vs. 5 (SSG5) training. Exercise intensity was measured using heart rate and expressed as a percentage of maximal heart rate (%MHR). Technical actions were quantified from video recordings. Maturation stage was determined with the Tanner scale. Exercise intensity in SSG3 (89.8 ± 2%MHR) was higher (p < 0.003) than that in SSG5 (86.9 ± 3%MHR). The EI in the first set (86.8 ± 4%MHR) was lower (p < 0.001) than that in the second (89.1 ± 3%MHR) and in the third set (89.4 ± 3%MRH). No effects of number of players were found in IWB, passes, target passes, tackles, and headers. Significantly more crosses, dribbling, and shots on goal were observed during SSG3 compared to during SSG4 or SSG5 (p < 0.05). The typical error for EI, expressed as coefficient of variation, ranged from 2.2 to 3.4%. The reliability for the most frequent technical actions ranged from 6.8 to 19.3%. The level of maturation was not correlated with either EI or IWB. These results extend previous findings with adult players suggesting that SSGs can provide an adequate training stimulus for young players and are feasible for groups with heterogeneous maturation levels.
The present study was designed to determine the effects of physical training on the development of cancer induced by the injection of Ehrlich tumor cells in mice. Male Swiss mice were subjected to a swim training protocol (5 days/wk for 6 wk, 1 h at 50% of maximal capacity-trained groups) or remained sedentary in their cages (sedentary groups). The inoculation of Ehrlich tumor cells was performed at the end of the fourth week, and animals were killed after 6 wk of training. Heart and solid tumor weights were recorded, and tumor volumes were calculated. Portions of the tumors were used for the evaluation of macrophages and neutrophil accumulation or fixed in neutral 10% buffered formalin for histological analysis. The tumor volume and weight were, respectively, approximately 270% and 280% greater in sedentary mice than in trained mice. Macrophage infiltration in the tumor tissue was significantly lower in trained mice (0.65 +/- 0.16 vs. 1.78 +/- 0.43 macrophages x 10(3) in the sedentary group). Moreover, neutrophil accumulation in tumors was slightly reduced after exercise training, and the amount of tumor cells was reduced in trained mice. Exercise capacity was substantially increased in trained mice, as determined by a 440% increase in the exercise time at 50% of maximal capacity. In summary, swim training retarded the development of Ehrlich tumors in mice, accompanied by a reduction in macrophage infiltration and neutrophil accumulation. These findings provide conceptual support for clinical observations that controlled physical activities may be a therapeutically important approach to preventing cancer progression and may improve the outcome of cancer treatment.
The present study evaluated whether the luteal phase elevation of body temperature would be offset during exercise by increased sweating, when women are normally hydrated. Eleven women performed 60 min of cycling exercise at 60% of their maximal work load at 32ºC and 80% relative air humidity. Each subject participated in two identical experimental sessions: one during the follicular phase (between days 5 and 8) and the other during the luteal phase (between days 22 and 25). Women with serum progesterone >3 ng/mL, in the luteal phase were classified as group 1 (N = 4), whereas the others were classified as group 2 (N = 7). Post-exercise urine volume (213 ± 80 vs 309 ± 113 mL) and specific urine gravity (1.008 ± 0.003 vs 1.006 ± 0.002) changed (P < 0.05) during the luteal phase compared to the follicular phase in group 1. No menstrual cycle dependence was observed for these parameters in group 2. Sweat rate was higher (P < 0.05) in the luteal (3.10 ± 0.81 g m -2 min -1 ) than in the follicular phase (2.80 ± 0.64 g m -2 min -1 ) only in group 1. During exercise, no differences related to menstrual cycle phases were seen in rectal temperature, heart rate, rate of perceived exertion, mean skin temperature, and pre-and post-exercise body weight. Women exercising in a warm and humid environment with water intake seem to be able to adapt to the luteal phase increase of basal body temperature through reduced urinary volume and increased sweating rate.
-The aims of the study were: 1) to analyze the exercise intensity in several phases (six phases of 15 min) of soccer matches; 2) to compare the match time spent above anaerobic threshold (AT) between different age groups (U-17 and U-20); and 3) to compare the match time spent above AT between players' positions (backs, midfielders, forwards and wingabcks). Forty-four male soccer players were analyzed. To express players' effort, the heart rate (HR) was continuously monitored in 29 official matches. Further, HR corresponding to the intensity at the onset of blood lactate accumulation (OBLA) was obtained in a field test. The highest exercise intensity during match was observed in the 15-30 min period of the first half (p< 0.05). Match time spent above AT was not different between players from U-17 and U-20. In the comparison among players' positions, wingbacks showed lower time above AT (p< 0.05) than players of other positions. The intensity of effort is higher in the 15 to 30 minutes of play (intermediate phase), probably because the players are more rested in the beginning and wearing out is progressive throughout the game. It is also noteworthy that the intensity of exercise (HR and time above AT) of wingbacks was lower, probably because they usually are required to run a larger number of sprints and need more time below the AT to recover.Key words: Anaerobic threshold; Exercise test; Heart rate; Soccer. (sub-17 e sub-20) Resumo -Os principais objetivos do presente estudo foram: 1) comparar a intensidade de exercício em diversas fases (seis fases de 15 min) de partidas de futebol; 2) comparar o tempo de partida acima do limiar anaeróbio (LAN) entre diferentes categorias
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.