In this early development study with a limited number of patients, postoperative MAGE-A3 immunization proved to be feasible with minimal toxicity. These results are being investigated further in a large phase III study.
One of the many potential uses of the HapMap project is its application to the investigation of complex disease aetiology among a wide range of populations. This study aims to assess the transferability of HapMap SNP data to the Spanish population in the context of cancer research. We have carried out a genotyping study in Spanish subjects involving 175 candidate cancer genes using an indirect gene-based approach and compared results with those for HapMap CEU subjects. Allele frequencies were very consistent between the two samples, with a high positive correlation (R) of 0.91 (P<<1x10(-6)). Linkage disequilibrium patterns and block structures across each gene were also very similar, with disequilibrium coefficient (r (2)) highly correlated (R=0.95, P<<1x10(-6)). We found that of the 21 genes that contained at least one block larger than 60 kb, nine (ATM, ATR, BRCA1, ERCC6, FANCC, RAD17, RAD50, RAD54B and XRCC4) belonged to the GO category "DNA repair". Haplotype frequencies per gene were also highly correlated (mean R=0.93), as was haplotype diversity (R=0.91, P<<1x10(-6)). "Yin yang" haplotypes were observed for 43% of the genes analysed and 18% of those were identical to the ancestral haplotype (identified in Chimpazee). Finally, the portability of tagSNPs identified in the HapMap CEU data using pairwise r (2) thresholds of 0.8 and 0.5 was assessed by applying these to the Spanish and current HapMap data for 66 genes. In general, the HapMap tagSNPs performed very well. Our results show generally high concordance with HapMap data in allele frequencies and haplotype distributions and confirm the applicability of HapMap SNP data to the study of complex diseases among the Spanish population.
The failure of linkage studies to identify further highpenetrance susceptibility genes for breast cancer points to a polygenic model, with more common variants having modest effects on risk, as the most likely candidate. We have carried out a two-stage case-control study in two European populations to identify low-penetrance genes for breast cancer using high-throughput genotyping. Single-nucleotide polymorphisms (SNPs) were selected across preselected cancer-related genes, choosing tagSNPs and functional variants where possible. In stage 1, genotype frequencies for 640 SNPs in 111 genes were compared between 864 breast cancer cases and 845 controls from the Spanish population. In stage 2, candidate SNPs identified in stage 1 (nominal P < 0.01) were tested in a Finnish series of 884 cases and 1,104 controls. Of the 10 candidate SNPs in seven genes identified in stage 1, one (rs744154) on intron 1 of ERCC4, a gene belonging to the nucleotide excision repair pathway, was associated with recessive protection from breast cancer after adjustment for multiple testing in stage 2 (odds ratio, 0.57; Bonferroniadjusted P = 0.04). After considering potential functional SNPs in the region of high linkage disequilibrium that extends across the entire gene and upstream into the promoter region, we concluded that rs744154 itself could be causal. Although intronic, it is located on the first intron, in a region that is highly conserved across species, and could therefore be functionally important. This study suggests that common intronic variation in ERCC4 is associated with protection from breast cancer. (Cancer Res 2006; 66(19): 9420-7)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.