Nuclear detection, segmentation and morphometric profiling are essential in helping us further understand the relationship between histology and patient outcome. To drive innovation in this area, we setup a community-wide challenge using the largest available dataset of its kind to assess nuclear segmentation and cellular composition. Our challenge, named CoNIC, stimulated the development of reproducible algorithms for cellular recognition with real-time result inspection on public leaderboards. We conducted an extensive post-challenge analysis based on the top-performing models using 1,658 whole-slide images of colon tissue. With around 700 million detected nuclei per model, associated features were used for dysplasia grading and survival analysis, where we demonstrated that the challenge's improvement over the previous state-ofthe-art led to significant boosts in downstream performance. Our findings also suggest that eosinophils and neutrophils play an important role in the tumour microevironment. We release challenge models and WSIlevel results to foster the development of further methods for biomarker discovery.
Recent advances in whole-slide imaging (WSI) technology have led to the development of a myriad of computer vision and artificial intelligence-based diagnostic, prognostic, and predictive algorithms. Computational Pathology (CPath) offers an integrated solution to utilise information embedded in pathology WSIs beyond what can be obtained through visual assessment. For automated analysis of WSIs and validation of machine learning (ML) models, annotations at the slide, tissue, and cellular levels are required. The annotation of important visual constructs in pathology images is an important component of CPath projects. Improper annotations can result in algorithms that are hard to interpret and can potentially produce inaccurate and inconsistent results. Despite the crucial role of annotations in CPath projects, there are no well-defined guidelines or best practices on how annotations should be carried out. In this paper, we address this shortcoming by presenting the experience and best practices acquired during the execution of a large-scale annotation exercise involving a multidisciplinary team of pathologists, ML experts, and researchers as part of the Pathology image data Lake for Analytics, Knowledge and Education (PathLAKE) consortium. We present a real-world case study along with examples of different types of annotations, diagnostic algorithm, annotation data dictionary, and annotation constructs. The analyses reported in this work highlight best practice recommendations that can be used as annotation guidelines over the lifecycle of a CPath project.
Histopathological examination is a pivotal step in the diagnosis and treatment planning of many major diseases. To facilitate the diagnostic decision-making and reduce the workload of pathologists, we present an AI-based pre-screening tool capable of identifying normal and neoplastic colon biopsies. To learn the differential histological patterns from whole slides images (WSIs) stained with hematoxylin and eosin (H&E), our proposed weakly supervised deep learning method requires only slide-level labels and no detailed cell or region-level annotations. The proposed method was developed and validated on an internal cohort of biopsy slides (n=4 292) from two hospitals labeled with corresponding diagnostic categories assigned by pathologists after reviewing case reports. Performance of the proposed colon cancer pre-screening tool was evaluated in a cross-validation setting using the internal cohort (n=4 292) and also by an external validation on The Cancer Genome Atlas (TCGA) cohort (n=731). With overall cross-validated classification accuracy (AUROC = 0.9895) and external validation accuracy (AUROC = 0.9746), the proposed tool promises high accuracy to assist with the pre-screening of colorectal biopsies in clinical practice. Analysis of saliency maps confirms the representation of disease heterogeneity in model predictions and their association with relevant pathological features. The proposed AI tool correctly reported some slides as neoplastic while clinical reports suggested they were normal. Additionally, we analyzed genetic mutations and gene enrichment analysis of AI-generated neoplastic scores to gain further insight into the model predictions and explore the association between neoplastic histology and genetic heterogeneity through representative genes and signaling pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.