One of the critical variables that determine the rate of any reaction is temperature. For biological systems, the effects of temperature are convoluted with myriad (and often opposing) contributions from enzyme catalysis, protein stability, and temperature-dependent regulation, for example. We have coined the phrase "macromolecular rate theory (MMRT)" to describe the temperature dependence of enzyme-catalyzed rates independent of stability or regulatory processes. Central to MMRT is the observation that enzyme-catalyzed reactions occur with significant values of ΔCp(‡) that are in general negative. That is, the heat capacity (Cp) for the enzyme-substrate complex is generally larger than the Cp for the enzyme-transition state complex. Consistent with a classical description of enzyme catalysis, a negative value for ΔCp(‡) is the result of the enzyme binding relatively weakly to the substrate and very tightly to the transition state. This observation of negative ΔCp(‡) has important implications for the temperature dependence of enzyme-catalyzed rates. Here, we lay out the fundamentals of MMRT. We present a number of hypotheses that arise directly from MMRT including a theoretical justification for the large size of enzymes and the basis for their optimum temperatures. We rationalize the behavior of psychrophilic enzymes and describe a "psychrophilic trap" which places limits on the evolution of enzymes in low temperature environments. One of the defining characteristics of biology is catalysis of chemical reactions by enzymes, and enzymes drive much of metabolism. Therefore, we also expect to see characteristics of MMRT at the level of cells, whole organisms, and even ecosystems.
SummaryWhile much is known about the biosynthesis of secondary metabolites by filamentous fungi their biological role is often less clear. The assumption is these pathways have adaptive value to the organism but often the evidence to support this role is lacking. We provide the first genetic evidence that the fungal produced secondary metabolite, peramine, protects a host plant from insect herbivory. Peramine is a potent insect feeding deterrent synthesized by Epichloë/ Neotyphodium mutualistic endophytes in association with their grass hosts. The structure of peramine, a pyrrolopyrazine, suggests that it is the product of a reaction catalysed by a two-module non-ribosomal peptide synthetase (NRPS). Candidate sequences for a peramine synthetase were amplified by reverse transcription polymerase chain reaction. Four unique NRPS products were identified, two of which were preferentially expressed in planta . One of these hybridized to known peramine producing strains. This clone was used to isolate an Epichloë festucae cosmid that contained a two-module NRPS, designated perA . Nine additional genes, which show striking conservation of microsynteny with Fusarium graminearum and other fungal genomes, were identified on the perA -containing cosmid. Associations between perennial ryegrass and an E. festucae mutant deleted for perA lack detectable levels of peramine. A wild-type copy of perA complemented the deletion mutant, confirming that perA is a NRPS required for peramine biosynthesis. In a choice bioassay, plant material containing the perA mutant was as susceptible to Argentine stem weevil (ASW) ( Listronotus bonariensis ) feeding damage as endophyte-free plants confirming that peramine is the E. festucae metabolite responsible for ASW feeding deterrent activity.
The increase in enzymatic rates with temperature up to an optimum temperature (Topt) is widely attributed to classical Arrhenius behavior, with the decrease in enzymatic rates above Topt ascribed to protein denaturation and/or aggregation. This account persists despite many investigators noting that denaturation is insufficient to explain the decline in enzymatic rates above Topt. Here we show that it is the change in heat capacity associated with enzyme catalysis (ΔC(‡)p) and its effect on the temperature dependence of ΔG(‡) that determines the temperature dependence of enzyme activity. Through mutagenesis, we demonstrate that the Topt of an enzyme is correlated with ΔC(‡)p and that changes to ΔC(‡)p are sufficient to change Topt without affecting the catalytic rate. Furthermore, using X-ray crystallography and molecular dynamics simulations we reveal the molecular details underpinning these changes in ΔC(‡)p. The influence of ΔC(‡)p on enzymatic rates has implications for the temperature dependence of biological rates from enzymes to ecosystems.
Improved understanding of the relationship among structure, dynamics, and function for the enzyme phenylalanine hydroxylase (PAH) can lead to needed new therapies for phenylketonuria, the most common inborn error of amino acid metabolism. PAH is a multidomain homo-multimeric protein whose conformation and multimerization properties respond to allosteric activation by the substrate phenylalanine (Phe); the allosteric regulation is necessary to maintain Phe below neurotoxic levels. A recently introduced model for allosteric regulation of PAH involves major domain motions and architecturally distinct PAH tetramers [Jaffe EK, Stith L, Lawrence SH, Andrake M, Dunbrack RL, Jr (2013) Arch Biochem Biophys 530(2):73-82]. Herein, we present, to our knowledge, the first X-ray crystal structure for a full-length mammalian (rat) PAH in an autoinhibited conformation. Chromatographic isolation of a monodisperse tetrameric PAH, in the absence of Phe, facilitated determination of the 2.9 Å crystal structure. The structure of full-length PAH supersedes a composite homology model that had been used extensively to rationalize phenylketonuria genotype-phenotype relationships. Small-angle X-ray scattering (SAXS) confirms that this tetramer, which dominates in the absence of Phe, is different from a Phestabilized allosterically activated PAH tetramer. The lack of structural detail for activated PAH remains a barrier to complete understanding of phenylketonuria genotype-phenotype relationships. Nevertheless, the use of SAXS and X-ray crystallography together to inspect PAH structure provides, to our knowledge, the first complete view of the enzyme in a tetrameric form that was not possible with prior partial crystal structures, and facilitates interpretation of a wealth of biochemical and structural data that was hitherto impossible to evaluate.phenylalanine hydroxylase | phenylketonuria | X-ray crystallography | small-angle X-ray scattering | allosteric regulation M ammalian phenylalanine hydroxylase (PAH) (EC 1.14.16.1) is a multidomain homo-multimeric protein whose dysfunction causes the most common inborn error in amino acid metabolism, phenylketonuria (PKU), and milder forms of hyperphenylalaninemia (OMIM 261600) (1). PAH catalyzes the hydroxylation of phenylalanine (Phe) to tyrosine, using nonheme iron and the cosubstrates tetrahydrobiopterin and molecular oxygen (2, 3). A detailed kinetic mechanism has recently been derived from elegant single-turnover studies (4). PAH activity must be carefully regulated, because although Phe is an essential amino acid, high Phe levels are neurotoxic. Thus, Phe allosterically activates PAH by binding to a regulatory domain. Phosphorylation at Ser16 potentiates the effects of Phe, with phosphorylated PAH achieving full activation at lower Phe concentrations than the unphosphorylated protein (5, 6). Allosteric activation by Phe is accompanied by a major conformational change, as evidenced by changes in protein fluorescence and proteolytic susceptibility, and by stabilization of a tetrameric confo...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.