An innovative open-label, crossover clinical study was used to investigate the excretion balance, pharmacokinetics, and metabolism of nemiralisib-an inhaled phosphoinositide 3-kinase delta inhibitor being developed for respiratory diseases. Six healthy men received a single intravenous microtracer of 10 mg [ 14 C]nemiralisib with a concomitant inhaled nonradiolabeled 1000 mg dose followed by an oral 800 mg dose of [ 14 C]nemiralisib 14 days later. Complementary methods including accelerator mass spectrometry allowed characterization of a range of parameters including oral absorption (F abs), proportion of nemiralisib escaping gut wall metabolism (F g), hepatic extraction (E h), fraction of dose absorbed from inhaled dose (F lung), and renal clearance. Intravenous pharmacokinetics of nemiralisib were characterized by low blood clearance (10.0 l/h), long terminal half-life (55 hours), and high volume of distribution at steady state (728 l). Nemiralisib exhibited moderate inhaled and oral bioavailability (38% and 35%) while F lung was 29%. Absorption and first-pass parameters were corrected for blood renal clearance and compared with values without correction. Any swallowed nemiralisib was relatively well absorbed (F abs , 0.48) with a high fraction escaping gut wall metabolism and low extraction by the liver (F g and E h being 0.83 and 0.10, respectively). There were no major human plasma metabolites requiring further qualification in animal studies. Both unchanged nemiralisib and its oxidative/conjugative metabolites were secreted in bile, with nemiralisib likely subject to further metabolism through enterohepatic recirculation. Direct renal clearance and metabolism followed by renal clearance were lesser routes of elimination. SIGNIFICANCE STATEMENT A number of innovative features have been combined into one small clinical study enabling a comprehensive description of the human pharmacokinetics and metabolism of an inhaled molecule. Design elements included an intravenous 14 C tracer administration concomitant with an inhalation dose that enabled derivation of parameters such as fraction absorbed (F abs), the proportion of drug escaping first-pass extraction through the gut wall and liver (F g and F h) and hepatic extraction (E h). Entero-test bile sampling enabled characterization of biliary elimination pathways.
RationaleThere is a need to develop imaging protocols which assess neutrophilic inflammation in the lung.AimTo quantify whole lung neutrophil accumulation in (1) healthy volunteers (HV) following inhaled lipopolysaccharide (LPS) or saline and (2) patients with COPD using radiolabelled autologous neutrophils and single-photon emission computed tomography/CT (SPECT/CT).Methods20 patients with COPD (Global initiative for chronic obstructive lung disease (GOLD) stages 2–3) and 18 HVs were studied. HVs received inhaled saline (n=6) or LPS (50 µg, n=12) prior to the injection of radiolabelled cells. Neutrophils were isolated using dextran sedimentation and Percoll plasma gradients and labelled with 99mTechnetium (Tc)-hexamethylpropyleneamine oxime. SPECT was performed over the thorax/upper abdomen at 45 min, 2 hours, 4 hours and 6 hours. Circulating biomarkers were measured prechallenge and post challenge. Blood neutrophil clearance in the lung was determined using Patlak-Rutland graphical analysis.ResultsThere was increased accumulation of 99mTc-neutrophils in the lungs of patients with COPD and LPS-challenged subjects compared with saline-challenged subjects (saline: 0.0006±0.0003 mL/min/mL lung blood distribution volume [mean ±1 SD]; COPD: 0.0022±0.0010 mL/min/mL [p<0.001]; LPS: 0.0025±0.0008 mL/min/mL [p<0.001]). The accumulation of labelled neutrophils in 10 patients with COPD who underwent repeat radiolabelling/imaging 7–10 days later was highly reproducible (0.0022±0.0010 mL/min/mL vs 0.0023±0.0009 mL/min/mL). Baseline interleukin (IL)-6 levels in patients with COPD were elevated compared with HVs (1.5±1.06 pg/mL [mean ±1 SD] vs 0.4±0.24 pg/mL). LPS challenge increased the circulating IL-6 levels (7.5±2.72 pg/mL) 9 hours post challenge.ConclusionsThis study shows the ability to quantify ‘whole lung’ neutrophil accumulation in HVs following LPS inhalation and in subjects with COPD using autologous radiolabelled neutrophils and SPECT/CT imaging. Moreover, the reproducibility observed supports the feasibility of using this approach to determine the efficacy of therapeutic agents aimed at altering neutrophil migration to the lungs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.