Key Messages• Previous measurements of regional colonic volume have used invasive methods that could disturb natural morphology.• Using MRI, volume measurement of the undisturbed colon was achieved in 75 healthy volunteers and 25 IBS-D patients. Normal volume ranges were defined.• IBS-D patients showed less ability to accommodate post-prandial inflow in the ascending colon.
AbstractBackground Previous assessments of colon morphology have relied on tests which were either invasive or used ionizing radiation. We aimed to measure regional volumes of the undisturbed colon in healthy volunteers (HV) and patients with diarrhea-predominant irritable bowel syndrome (IBS-D). Methods 3D regional (ascending, transverse, and descending) colon volumes were measured in fasting abdominal magnetic resonance (MR) images of 75 HVs and 25 IBS-D patients. Thirty-five of the HV and all 25 IBS-D subjects were fed a standard meal and postprandial MRI data obtained over 225 min. Key Results Colonic regions were identified and 3D maps from cecum to sigmoid flexure were defined. Fasted regional volumes showed wide variation in both HVs being (mean AE SD) ascending colon (AC) 203 AE 75 mL, transverse (TC) 198 AE 79 mL, and descending (DC) 160 AE 86 mL with no difference from IBS-D subjects (AC 205 AE 69 mL, TC 232 AE 100 mL, and DC 151 AE 71 mL, respectively). The AC volume expanded by 10% after feeding (p = 0.007) in the 35 HV possibly due to increased ileo-colonic inflow. A later rise in AC volume occurred from t = 90 to t = 240 min as the meal residue entered the cecum. In contrast, IBS-D subjects showed a much reduced postprandial response of the AC (p < 0.0001) and a greater increase in TC volume after 90 min (p = 0.0244) compared to HV. Conclusions & Inferences We have defined a normal range of the regional volumes of the undisturbed colon in fasted and fed states. The AC in IBS-D appeared less able to accommodate postprandial inflow which may account for faster colonic transit.
A complex of the TSH receptor extracellular domain (amino acids 22-260; TSHR260) bound to a blocking-type human monoclonal autoantibody (K1-70) was purified, crystallised and the structure solved at 1 . 9 Å resolution. complexes show a root mean square deviation on all C a atoms of only 0 . 51 Å . These high-resolution crystal structures provide a foundation for developing new strategies to understand and control TSHR activation and the autoimmune response to the TSHR.
The availability of 5C9 provides new opportunities to investigate the binding and biological activity of TSHR blocking type autoantibodies including studies at the molecular level. Furthermore, monoclonal antibodies such as 5C9 may well provide the basis of new drugs to control TSHR activity including applications in thyroid cancer and Graves' ophthalmopathy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.