The cyclin-dependent kinase inhibitor p21(WAF1/CIP1) (p21) is a cell-cycle checkpoint effector and inducer of senescence, regulated by p53. Yet, evidence suggests that p21 could also be oncogenic, through a mechanism that has so far remained obscure. We report that a subset of atypical cancerous cells strongly expressing p21 showed proliferation features. This occurred predominantly in p53-mutant human cancers, suggesting p53-independent upregulation of p21 selectively in more aggressive tumour cells. Multifaceted phenotypic and genomic analyses of p21-inducible, p53-null, cancerous and near-normal cellular models showed that after an initial senescence-like phase, a subpopulation of p21-expressing proliferating cells emerged, featuring increased genomic instability, aggressiveness and chemoresistance. Mechanistically, sustained p21 accumulation inhibited mainly the CRL4-CDT2 ubiquitin ligase, leading to deregulated origin licensing and replication stress. Collectively, our data reveal the tumour-promoting ability of p21 through deregulation of DNA replication licensing machinery-an unorthodox role to be considered in cancer treatment, since p21 responds to various stimuli including some chemotherapy drugs.
Individuals with melanocortin 1 receptor (MC1R) gene variants have been shown to carry an increased risk for the development of melanoma. In this study, we investigated the relationship of MC1R gene variants and the risk of melanoma in 123 melanoma patients and 155 control subjects from Greece. The entire MC1R gene was sequenced for polymorphisms and the results were correlated with host factors and pigmentary characteristics. MC1R polymorphisms were present in 59.4% of melanoma patients compared to 37.5% of controls, yielding an odds ratio (OR) of 2.43 (95% confidence interval (CI) = 1.50-3.96, P < 0.001) for melanoma among MC1R carriers. The risk of melanoma was enhanced in individuals carrying multiple variant alleles (OR = 6.97; 95% CI = 1.86-26.12, P = 0.004). Only the Val60Leu, Arg142His, and Arg151Cys variants were significantly associated with melanoma risk. In stratified analysis, the risk of melanoma among MC1R carriers was not influenced by skin phototype, skin color, or hair color. No association was found between MC1R genotype and the age of onset of melanoma, the tumor location, or the tumor thickness. In conclusion, MC1R polymorphisms are a predisposing factor of melanoma in a southern European population with a relatively low incidence of the disease.
BackgroundCarriers of apparently balanced translocations are usually phenotypically normal; however in about 6% of de novo cases, an abnormal phenotype is present. In the current study we investigated 12 patients, six de novo and six familial, with apparently balanced translocations and mental retardation and/or congenital malformations by applying 1 Mb resolution array-CGH. In all de novo cases, only the patient was a carrier of the translocation and had abnormal phenotype. In five out of the six familial cases, the phenotype of the patient was abnormal, although the karyotype appeared identical to other phenotypically normal carriers of the family. In the sixth familial case, all carriers of the translocations had an abnormal phenotype.ResultsChromosomal and FISH analyses suggested that the rearrangements were "truly balanced" in all patients. However, array-CGH, revealed cryptic imbalances in three cases (3/12, 25%), two de novo (2/12, 33.3%) and one familial (1/12, 16.6%). The nature and type of abnormalities differed among the cases. In the first case, what was identified as a de novo t(9;15)(q31;q26.1), a complex rearrangement was revealed involving a ~6.1 Mb duplication on the long arm of chromosome 9, an ~10 Mb deletion and an inversion both on the long arm of chromosome 15. These imbalances were located near the translocation breakpoints. In the second case of a de novo t(4;9)(q25;q21.2), an ~6.6 Mb deletion was identified on the short arm of chromosome 7 which is unrelated to the translocation. In the third case, of a familial, t(4;7)(q13.3;p15.3), two deletions of ~4.3 Mb and ~2.3 Mb were found, each at one of the two translocation breakpoints. In the remaining cases the translocations appeared balanced at 1 Mb resolution.ConclusionThis study investigated both de novo and familial apparently balanced translocations unlike other relatively large studies which are mainly focused on de novo cases. This study provides additional evidence that cryptic genomic imbalances are common in patients with abnormal phenotype and "apparently balanced" translocations not only in de novo but can also occur in familial cases. The use of microarrays with higher resolution such as oligo-arrays may reveal that the frequency of cryptic genomic imbalances among these patients is higher.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.