Breast cancer susceptibility variants frequently show heterogeneity in associations by tumor subtype. To identify novel loci, we performed a genome-wide association study (GWAS) including 133,384 breast cancer cases and 113,789 controls, plus 18,908 BRCA1 mutation carriers (9,414 with breast cancer) of European ancestry, using both standard and novel methodologies that account for underlying tumor heterogeneity by estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) status and tumor grade. We identified 32 novel susceptibility loci (P<5.0x10 -8 ), 15 of which showed evidence for associations with at least one tumor feature (false discovery rate <0.05). Five loci showed associations (P<0.05) in opposite directions between luminal-and non-luminal subtypes. In-silico analyses showed these five loci contained cell-specific enhancers that differed between normal luminal and basal mammary cells. The genetic correlations between five intrinsic-like subtypes ranged from 0.35 to 0.80. The proportion of genome-wide chip heritability explained by all known susceptibility loci was 37.6% for triple-negative and 54.2% for luminal A-like disease. These findings provide an improved understanding of genetic predisposition to breast cancer subtypes and will inform the development of subtype-specific polygenic risk scores.
Reproductive longevity is critical for fertility and impacts healthy ageing in women, yet insights into the underlying biological mechanisms and treatments to preserve it are limited. Here, we identify 290 genetic determinants of ovarian ageing, assessed using normal variation in age at natural menopause (ANM) in ∼200,000 women of European ancestry. These common alleles influence clinical extremes of ANM; women in the top 1% of genetic susceptibility have an equivalent risk of premature ovarian insufficiency to those carrying monogenic FMR1 premutations. Identified loci implicate a broad range of DNA damage response (DDR) processes and include loss-of-function variants in key DDR genes. Integration with experimental models demonstrates that these DDR processes act across the life-course to shape the ovarian reserve and its rate of depletion. Furthermore, we demonstrate that experimental manipulation of DDR pathways highlighted by human genetics increase fertility and extend reproductive life in mice. Causal inference analyses using the identified genetic variants indicates that extending reproductive life in women improves bone health and reduces risk of type 2 diabetes, but increases risks of hormone-sensitive cancers. These findings provide insight into the mechanisms governing ovarian ageing, when they act across the life-course, and how they might be targeted by therapeutic approaches to extend fertility and prevent disease.
Previous transcriptome‐wide association studies (TWAS) have identified breast cancer risk genes by integrating data from expression quantitative loci and genome‐wide association studies (GWAS), but analyses of breast cancer subtype‐specific associations have been limited. In this study, we conducted a TWAS using gene expression data from GTEx and summary statistics from the hitherto largest GWAS meta‐analysis conducted for breast cancer overall, and by estrogen receptor subtypes (ER+ and ER−). We further compared associations with ER+ and ER− subtypes, using a case‐only TWAS approach. We also conducted multigene conditional analyses in regions with multiple TWAS associations. Two genes, STXBP4 and HIST2H2BA, were specifically associated with ER+ but not with ER– breast cancer. We further identified 30 TWAS‐significant genes associated with overall breast cancer risk, including four that were not identified in previous studies. Conditional analyses identified single independent breast‐cancer gene in three of six regions harboring multiple TWAS‐significant genes. Our study provides new information on breast cancer genetics and biology, particularly about genomic differences between ER+ and ER− breast cancer.
(1) Background: There is evidence in the recent literature that the incidence patterns of colorectal cancer (CRC) have changed considerably over the years, tending to rise rapidly in individuals under 50 years old compared with those over 50 years. The current study aimed to assess the incidence of CRC in Crete from 1992–2021 and compare them among younger and older adults. (2) Methods: Data on malignant neoplasms of colon, rectosigmoid junction, and rectum have been extracted from the database of the Regional Cancer Registry of Crete. (3) Results: The number of these cases for the period 1992–2021 was 3857 (n = 2895 colon and n = 962 rectum). The mean age-specific incidence rate (ASpIR/100,000/year) of colon cancer patients < 50 years was 7.2 (95% CI 5.1–9.7), while for patients ≥ 50 years the ASpIR was 149 (95% CI 146.2–153.4). ASpIR presented a 29.6% increase from 2001 to 2011 in the age group of 20–34 years and further increase is expected from 2022–2030 (projected change, 42.8%). The main risk factors were the pack years (p = 0.01), alcohol consumption (0.02), and farmer occupation (0.04), especially during 2012–2021. (4) Conclusions: We confirmed an increased incidence of CRC in young adults < 50 in a European population with low cancer incidence in the past and a worrisome prediction for the near future. The observed trends clearly indicate that starting CRC screening at an earlier age may be essential.
Background Protein truncating variants in ATM, BRCA1, BRCA2, CHEK2, and PALB2 are associated with increased breast cancer risk, but risks associated with missense variants in these genes are uncertain. Methods We analyzed data on 59,639 breast cancer cases and 53,165 controls from studies participating in the Breast Cancer Association Consortium BRIDGES project. We sampled training (80%) and validation (20%) sets to analyze rare missense variants in ATM (1146 training variants), BRCA1 (644), BRCA2 (1425), CHEK2 (325), and PALB2 (472). We evaluated breast cancer risks according to five in silico prediction-of-deleteriousness algorithms, functional protein domain, and frequency, using logistic regression models and also mixture models in which a subset of variants was assumed to be risk-associated. Results The most predictive in silico algorithms were Helix (BRCA1, BRCA2 and CHEK2) and CADD (ATM). Increased risks appeared restricted to functional protein domains for ATM (FAT and PIK domains) and BRCA1 (RING and BRCT domains). For ATM, BRCA1, and BRCA2, data were compatible with small subsets (approximately 7%, 2%, and 0.6%, respectively) of rare missense variants giving similar risk to those of protein truncating variants in the same gene. For CHEK2, data were more consistent with a large fraction (approximately 60%) of rare missense variants giving a lower risk (OR 1.75, 95% CI (1.47–2.08)) than CHEK2 protein truncating variants. There was little evidence for an association with risk for missense variants in PALB2. The best fitting models were well calibrated in the validation set. Conclusions These results will inform risk prediction models and the selection of candidate variants for functional assays and could contribute to the clinical reporting of gene panel testing for breast cancer susceptibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.