The inflammasome is a cytosolic protein complex regulating the activation of caspase-1, which cleaves the pro-inflammatory cytokines IL-1beta and IL-18 into their active form. The inflammasome is composed of a NACHT-, LRR- and pyrin (NALP) family member that acts as a sensor for danger signals and the adaptor protein apoptosis-associated speck-like protein containing a CARD domain (ASC), which allows the recruitment of caspase-1 in the complex. In the skin, exposure to contact sensitizers (CS) such as trinitro-chlorobenzene causes an immune response called contact hypersensitivity (CHS) or eczema. In this delayed-type hypersensitivity response, efficient priming of the adaptive immunity depends on the concomitant activation of the innate immune system, including IL-1beta/IL-18 activation in the skin. To determine if the inflammasome contributes to CHS, we have analyzed its capacity to react to CS in vitro and in vivo. We show here that key components of the inflammasome are present in human keratinocytes and that CS like trinitro-chlorobenzene induce caspase-1/ASC dependent IL-1beta and IL-18 processing and secretion. We also show that ASC- and NALP3-deficient mice display an impaired response to CS. These findings suggest that CS act as danger signals that activate the inflammasome in the skin, and reveal a new role of NALP3 and ASC as regulators of innate immunity in CHS.
Conditioning therapies before transplantation induce the release of uric acid, which triggers the NLRP3 inflammasome and IL-1β production contributing to graft-versus-host disease.
Acne vulgaris is potentially a severe skin disease associated with colonization of the pilo-sebaceous unit by the commensal bacterium Propionibacterium acnes and inflammation. P. acnes is considered to contribute to inflammation in acne, but the pathways involved are unclear. Here we reveal a mechanism that regulates inflammatory responses to P. acnes. We show that IL-1β mRNA and the active processed form of IL-1β are abundant in inflammatory acne lesions. Moreover, we identify P. acnes as a trigger of monocyte-macrophage NLRP3-inflammasome activation, IL-1β processing and secretion that is dependent on phagocytosis, lysosomal destabilization, reactive oxygen species, and cellular K+ efflux. In mice, inflammation induced by P. acnes is critically dependent on IL-1β and the NLRP3 inflammasome of myeloid cells. These findings show that the commensal P. acnes-by activating the inflammasome-can trigger an innate immune response in the skin, thus establishing the NLRP3-inflammasome and IL-1β as possible therapeutic targets in acne.
Expression of tissue-specific homing molecules directs antigen-experienced T cells to particular peripheral tissues. In studies using soluble antigens that focused on skin and gut, antigen-presenting cells (APCs) within regional lymphoid tissues were proposed to be responsible for imprinting homing phenotypes. Whether this occurs in other sites and after physiologic antigen processing and presentation is unknown. We define in vivo imprinting of distinct homing phenotypes on monospecific T cells responding to antigens expressed by tumors in intracerebral, subcutaneous, and intraperitoneal sites with efficient brain-tropism of CD8 T cells crossprimed in the cervical lymph nodes (LNs). Multiple imprinting programs could occur simultaneously in the same LN when tumors were present in more than one site. Thus, the identity of the LN is not paramount in determining the homing phenotype; this critical functional parameter is dictated upstream at the site of antigen capture by crosspresenting APCs.
Purpose: Immunotherapy has experienced impressive progress in cancer treatment. Antibodies against PD-1 improved survival in different types of cancer including melanoma. They are generally well tolerated. However, skin toxicities including pruritus, rashes, and vitiligo are reported. Although frequent, they have not been characterized further yet. In this analysis, we aimed to systematically assess and characterize the adverse cutaneous reactions observed in patients with melanoma treated with anti-PD-1 antibodies. Experimental Design: Patients with melanoma were treated with anti-PD-1 antibodies within clinical trials and an early-access program. Adverse cutaneous eruptions that emerged in our melanoma patient cohort were systematically investigated and classified using histology and gene expression profiling in comparison with maculopapular drug rash, cutaneous GVHD, and the severe drug eruption toxic epidermal necrolysis (TEN). Results: Between February 2013 and September 2015, 68 patients with stage IV melanoma were treated at the University Hospital Zurich (Zurich, Switzerland); 15 patients (22%) developed cutaneous reactions and 10 (15%) vitiligo. The cutaneous reactions ranged from small erythematous papules with mild pruritus to disseminated erythematous maculopapular rashes (MPR) without signs of epidermal involvement to severe MPRs, including epidermal detachment and mucosal involvement. Although skin involvement varied from mild rash to bullous drug eruptions, gene expression profiling pathogenically classified all investigated cases as TEN-like reactions. Conclusions: As predicted by the PD-1 knockout mouse, anti-PD-1 antibodies frequently cause adverse cutaneous reactions. Gene expression profiling reminds in all cases of a TEN-like pattern, suggesting that PD-1/PD-L1 interaction is required to preserve epidermal integrity during inflammatory skin reactions. Clin Cancer Res; 22(16); 4023–9. ©2016 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.