International audienceInsects comprise relevant biological models for investigating nutrient acquisition and allocation processes in the context of life-history ecology and evolution. However, empirical investigations are still partly limited by the lack of availability of simple methods for simultaneously estimating the four major energetic components (i.e. lipids, free sugars, glycogen and proteins) in the same individual. In the present work, we validate a fast, reproducible and cheap method for overcoming this problem that uses different solvents successively. First, proteins are solubilized in a phosphate-lysis buffer and then quantified according to the classical Bradford assay procedure. In a second step, a chloroform-methanol mixture is added to the aqueous phase, which allows assay of the total lipid fraction, as well as the free sugars and glycogen in the same insect homogenate. In addition, a micro-separation procedure is adapted to partition the total lipids into neutral (mainly stored lipids) and polar (mainly structural lipids) components. Although these assays are conducted sequentially in the same individual, the sensitivity of our method remains high: the estimated amount of each energetic compartment does not differ from that obtained with former, partial methods. Our method should thus largely improve our knowledge about nutrient acquisition and allocation among insects not only in laboratory-reared individuals, but also in animals caught in the wild. Descriptions and recommendations are given at each step of the protocol to adapt the procedure to various insect species. Finally, to prevent misinterpretation of data generated in accordance with this protocol, the limits of our method are discussed in the light of life-history studies
Summary 1.Although parasitoids are used widely as a biological models for understanding the evolution of animal behaviour, most studies have been constrained to the laboratory. The dearth of field studies has been compounded by the almost complete ignorance of the physiological parameters involved in foraging and dispersal, in particular of the energetic constraints imposed by resource limitation. 2. We estimated the dynamics of carbohydrates and lipids reserves of Venturia canescen s (Gravenhorst) females by releasing individuals of known nutritional status in a natural environment and recapturing them using host-containing traps. The recapture rate was around 30%. These results were compared with the reserves of caged animals kept under different experimental conditions (freshly emerged, starved to death, fed ad libitum and partially starved). Wild animals were also sampled in order to estimate the resource levels of the local population. 3. The results show that: (i) wasps are able to maintain a nearly constant level of energy over an extended foraging period; (ii) V. canescens takes sugars in the field; and (iii) the lipid reserves accumulated during the larval life may be limiting as lipogenesis does not take place in adults even under conditions of high sugar availability. 4. These results demonstrate that wasps can forage for hosts and food and disperse in this habitat for hours and days without running into a severe risk of energy limitation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.