Boranes are widely used Lewis acids and N-heterocyclic carbenes (NHCs) are popular Lewis bases, so it is remarkable how little was known about their derived complexes until recently. NHC-boranes are typically readily accessible and many are so stable that they can be treated like organic compounds rather than complexes. They do not exhibit "borane chemistry", but instead are proving to have a rich chemistry of their own as reactants, as reagents, as initiators, and as catalysts. They have significant potential for use in organic synthesis and in polymer chemistry. They can be used to easily make unusual complexes with a broad spectrum of functional groups not usually seen in organoboron chemistry. Many of their reactions occur through new classes of reactive intermediates including borenium cations, boryl radicals, and even boryl anions. This Review provides comprehensive coverage of the synthesis, characterization, and reactions of NHC-boranes.
Boryl halide, carboxylate and sulfonate complexes of 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene (dipp-Imd-BH(2)X, X = halide or sulfonate) have been prepared from the parent borane dipp-Imd-BH(3) by (1) substitution reactions with R-X (X = halide or sulfonate), (2) reactions with electrophiles (like I(2) or NIS), or (3) acid/base reactions with HX (provided that HX has a pK(a) of about 2 or less). Dipp-Imd-BH(2)I is most conveniently prepared by reaction with diiodine while dipp-Imd-BH(2)OTf is best prepared by reaction with triflic acid. These and other less reactive complexes behave as electrophiles and can be substituted by a wide range of heteroatom nucleophiles including halides, thiolates and other sulfur-based nucleophiles, isocyanate, azide, nitrite, and cyanide. The resulting products are remarkably stable, and many have been characterized by X-ray crystallography. Several are members of very rare classes of functionalized boron compounds (boron azide, nitro compound, nitrous ester, etc.).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.