International audienceCompressible granular materials are involved in many applications, some of them being related to energetic porous media. Gas permeation effects are important during their compaction stage, as well as their eventual chemical decomposition. Also, many situations involve porous media separated from pure fluids through two-phase interfaces. It is thus important to develop theoretical and numerical formulations to deal with granular materials in the presence of both two-phase interfaces and gas permeation effects. Similar topic was addressed for fluid mixtures and interfaces with the Discrete Equations Method (DEM) [R. Abgrall and R. Saurel, ``Discrete equations for physical and numerical compressible multiphase mixtures,''J. Comput. Phys. 186 (2), 361-396 (2003)] but it seemed impossible to extend this approach to granular media as intergranular stress [K. K. Kuo, V. Yang, and B. B. Moore, ``Intragranular stress, particle-wall friction and speed of sound in granular propellant beds,'' J. Ballist. 4 (1), 697-730 (1980)] and associated configuration energy [J. B. Bdzil, R. Menikoff, S. F. Son, A. K. Kapila, and D. S. Stewart, `` Two-phase modeling of deflagration-to-detonation transition in granular materials: A critical examination of modeling issues,'' Phys. Fluids 11, 378 (1999)] were present with significant effects. An approach to deal with fluid-porous media interfaces was derived in Saurel et al. [''Modelling dynamic and irreversible powder compaction,'' J. Fluid Mech. 664, 348-396 (2010)] but its validity was restricted to weak velocity disequilibrium only. Thanks to a deeper analysis, the DEM is successfully extended to granular media modelling in the present paper. It results in an enhanced version of the Baer and Nunziato [''A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials,'' Int. J. Multiphase Flow 12 (6), 861-889 (1986)] model as symmetry of the formulation is now preserved. Several computational examples are shown to validate and illustrate method's capabilities. (C) 2014 AIP Publishing LLC
A new Riemann solver is built to address numerical resolution of complex flow models. The research direction is closely linked to a variant of the Baer and Nunziato (1986) model developed in Saurel et al. (2017a). This recent model provides a link between the Marble (1963) model for two-phase dilute suspensions and dense mixtures. As in the Marble model, Saurel et al. system is weakly hyperbolic with the same 4 characteristic waves, while the system involves 7 partial differential equations. It poses serious theoretical and practical issues to built simple and accurate flow solver. To overcome related difficulties the Riemann solver of Linde (2002) is revisited. The method is first examined in the simplified context of compressible Euler equations. Physical considerations are introduced in the solver improving robustness and accuracy of the Linde method. With these modifications the flow solver appears as accurate as the HLLC solver of Toro et al. (1994). Second the two-phase flow model is considered. A locally conservative formulation is built and validated removing issues related to nonconservative terms. However, two extra major issues appear from numerical experiments: The solution appears not self-similar and multiple contact waves appear in the dispersed phase. Building HLLC-type or any other solver appears consequently challenging. The modified Linde (2002) method is thus examined for the considered flow model. Some basic properties of the equations are used, such as shock relations of the dispersed phase and jump conditions across the contact wave. Thanks to these ingredients the new Riemann solver with internal reconstruction (RSIR), modification of the Linde method, handles stationary volume fraction discontinuities, presents low dissipation for transport waves and handles shocks and expansion waves accurately. It is validated on various test problems showing method's accuracy and versatility for complex flow models. Its capabilities are illustrated on a difficult two-phase flow instability problem, unresolved before.
Lab-scale experimental investigations on blast wave propagation in a complex environment are proposed in this paper. Studies of blast propagation are described in the literature, but only a few studies at lab-scale were found while this scale option represents an economic and safe approach.Five experimental configurations, built with wood boxes on a 2.8 m wood table, are tested in a 1:200 reduced scale using three types of explosives. Several characteristics of the explosives are given: the geometry of the explosion, the repeatability, and the TNT equivalent.An overview of impacts of a complex environment on the blast wave characteristics is proposed. The urban configurations investigated are the straight street, the T-junction, the cross junction, and the channeling. Investigations on reduced-scale effects on blast measurement and characteristics are detailed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.