We describe here the development of nanoparticles made from poly(lactic-co-glycolic acid) (PLGA) able to deliver an encapsulated antigen with a Toll-Like Receptor-7 (TLR-7) agonist as immunostimulatory signal and coated with a muco-adhesive chitosan-derivate layer. The potential to stimulate an immune response of these vaccine formulations in the absence or presence of the TLR-7 agonist at the systemic and mucosal level were evaluated in mice following subcutaneous or nasal administrations. Intranasally immunized mice developed a high systemic immune response equivalent to mice injected subcutaneously. However, mucosal immune responses were only induced at local and distal sites in mucosally immunized animals. The adjuvant effect of imiquimod on the polarization of the immune response was only detected at local sites, which tends to increase safety of this vaccine delivery system.
We investigated the role of Toll-like receptor (TLR) 2 in maintaining the integrity of the airway epithelial barrier using the human bronchial epithelial cell line Calu-3. Activation of TLR2 by its ligands, Pam3CysSK4 and Peptidoglycan showed a concentration dependent increase in epithelial barrier function, as measured by transepithelial electrical resistance (TEER). This was confirmed by a decrease in paracellular flux of fluorescein sodium. This TLR2 induced increase in TEER was significantly reduced by pretreatment with polyclonal anti-human TLR2-neutralizing antibody. TLR2 stimulation in Calu-3 cell monolayers resulted in an increased expression of the tight junction proteins claudin-1 and ZO-1, and a decreased expression of occludin, at both the mRNA and protein levels. A pseudosubstrate inhibitor to PKCζ significantly prevented the TLR2 mediated increase in barrier function. It also prevented the increase in claudin-1 in a concentration dependent manner up to 1 µM. TLR2 stimulation led to an increase in phosphorylation of atypical PKC ζ, which was prevented by the pseudosubstrate inhibitor in a concentration dependent manner. Taken together, our observations support a model whereby increased tight junction barrier function induced by activation of TLR2 occurs through increased expression of claudin-1, and through modulation of PKC ζ activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.