We identified complex genomic rearrangements consisting of intermixed duplications and triplications of genomic segments at both the MECP2 and PLP1 loci. These complex rearrangements were characterized by a triplicated segment embedded within a duplication in 12 unrelated subjects. Interestingly, only two novel breakpoint junctions were generated during each rearrangement formation. Remarkably, all the complex rearrangement products share the common genomic organization duplication-inverted triplication-duplication (DUP-TRP/INV-DUP) wherein the triplicated segment is inverted and located between directly oriented duplicated genomic segments. We provide evidence that the DUP-TRP/INV-DUP structures are mediated by inverted repeats that can be separated by over 300 kb; a genomic architecture that apparently leads to susceptibility to such complex rearrangements. A similar inverted repeat mediated mechanism may underlie structural variation in many other regions of the human genome. We propose a mechanism that involves both homology driven, via inverted repeats, and microhomologous/nonhomologous events.
Purpose: A clinical trial was conducted to evaluate the safety and efficacy of alglucosidase alfa in infants and children with advanced Pompe disease. Methods: Open-label, multicenter study of IV alglucosidase alfa treatment in 21 infants 3-43 months old (median 13 months) with minimal acid ␣-glucosidase activity and abnormal left ventricular mass index by echocardiography. Patients received IV alglucosidase alfa every 2 weeks for up to 168 weeks (median 120 weeks). Survival results were compared with an untreated reference cohort. Results: At study end, 71% (15/21) of patients were alive and 44% (7/16) of invasive-ventilator free patients remained so. Compared with the untreated reference cohort, alglucosidase alfa reduced the risk of death by 79% (P Ͻ 0.001) and the risk of invasive ventilation by 58% (P ϭ 0.02). Left ventricular mass index improved or remained normal in all patients evaluated beyond 12 weeks; 62% (13/21) achieved new motor milestones. Five patients were walking independently at the end of the study and 86% (18/21) gained functional independence skills. Overall, 52% (11/21) of patients experienced infusion-associated reactions; 95% (19/20) developed IgG antibodies to recombinant human lysosomal acid ␣-glucosidase; no patients withdrew from the study because of safety concerns. Conclusions: In this population of infants with advanced disease, biweekly infusions with alglucosidase alfa prolonged survival and invasive ventilation-free survival. Treatment also improved indices of cardiomyopathy, motor skills, and functional independence. Genet Med 2009:11(3):210-219.
Although it is well recognized that a peripheral vasculopathy may occur in patients with neurofibromatosis 1 (NF1), it is unclear whether cardiovascular abnormalities are more common. We reviewed the frequency of cardiovascular abnormalities, in particular, cardiovascular malformations (CVMs), among 2322 patients with definite NF1 in the National Neurofibromatosis Foundation International Database from 1991-98. Cardiovascular malformations were reported in 54/2322 (2.3%) of the NF1 patients, only 4 of whom had Watson syndrome or NF1-Noonan syndrome. There was a predominance of Class II "flow" defects [Clark, 1995: Moss and Adams' Heart Disease in Infants, Children, and Adolescents Including the Fetus and Young Adult. p 60-70] (43/54, 80%) among the NF1 patients with CVMs. Pulmonic stenosis, that was present in 25 NF1 patients, and aortic coarctation, that occurred in 5, constitute much larger proportions of all CVMs than expected. Of interest was the paucity of Class I conotruncal defects (2 patients with tetralogy of Fallot), and the absence of atrioventricular canal, anomalous pulmonary venous return, complex single ventricle and laterality defects. Besides the 54 patients with CVMs, there were 27 patients with other cardiac abnormalities (16 with murmur, 5 with mitral valve prolapse, 1 with intracardiac tumor, and 5 with electrocardiogram abnormalities). No patient in this study had hypertrophic cardiomyopathy. There were 16 patients who had a peripheral vascular abnormality without an intracardiac CVM, plus an additional 4 patients among those with a CVM who also had a peripheral vascular abnormality.
Chromosomal copy number variants (CNV) are the most common genetic lesion found in autism. Many autism-associated CNVs are duplications of chromosome 15q. Although most cases of interstitial (int) dup(15) that present clinically are de novo and maternally derived or inherited, both pathogenic and unaffected paternal duplications of 15q have been identified. We performed a phenotype/genotype analysis of individuals with interstitial 15q duplications to broaden our understanding of the 15q syndrome and investigate the contribution of 15q duplication to increased autism risk. All subjects were recruited solely on the basis of interstitial duplication 15q11.2-q13 status. Comparative array genome hybridization was used to determine the duplication size and boundaries while the methylation status of the maternally methylated small nuclear ribonucleoprotein polypeptide N gene was used to determine the parent of origin of the duplication. We determined the duplication size and parental origin for 14 int dup(15) subjects: 10 maternal and 4 paternal cases. The majority of int dup(15) cases recruited were maternal in origin, most likely due to our finding that maternal duplication was coincident with autism spectrum disorder. The size of the duplication did not correlate with the severity of the phenotype as established by Autism Diagnostic Observation Scale calibrated severity score. We identified phenotypes not comprehensively described before in this cohort including mild facial dysmorphism, sleep problems and an unusual electroencephalogram variant. Our results are consistent with the hypothesis that the maternally expressed ubiquitin protein ligase E3A gene is primarily responsible for the autism phenotype in int dup(15) since all maternal cases tested presented on the autism spectrum.
Neurofibromatosis type 1 (NF1) is one of the most frequent genetic disorders, affecting 1:3,000 worldwide. Identification of genotype–phenotype correlations is challenging because of the wide range clinical variability, the progressive nature of the disorder, and extreme diversity of the mutational spectrum. We report 136 individuals with a distinct phenotype carrying one of five different NF1 missense mutations affecting p.Arg1809. Patients presented with multiple café‐au‐lait macules (CALM) with or without freckling and Lisch nodules, but no externally visible plexiform neurofibromas or clear cutaneous neurofibromas were found. About 25% of the individuals had Noonan‐like features. Pulmonic stenosis and short stature were significantly more prevalent compared with classic cohorts (P < 0.0001). Developmental delays and/or learning disabilities were reported in over 50% of patients. Melanocytes cultured from a CALM in a segmental NF1‐patient showed two different somatic NF1 mutations, p.Arg1809Cys and a multi‐exon deletion, providing genetic evidence that p.Arg1809Cys is a loss‐of‐function mutation in the melanocytes and causes a pigmentary phenotype. Constitutional missense mutations at p.Arg1809 affect 1.23% of unrelated NF1 probands in the UAB cohort, therefore this specific NF1 genotype–phenotype correlation will affect counseling and management of a significant number of patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.