Cancer risk is highly variable in carriers of the common TP53-R337H founder allele, possibly due to the influence of modifier genes. Whole-genome sequencing identified a variant in the tumor suppressor XAF1 (E134*/Glu134Ter/rs146752602) in a subset of R337H carriers. Haplotype-defining variants were verified in 203 patients with cancer, 582 relatives, and 42,438 newborns. The compound mutant haplotype was enriched in patients with cancer, conferring risk for sarcoma (P = 0.003) and subsequent malignancies (P = 0.006). Functional analyses demonstrated that wild-type XAF1 enhances transactivation of wild-type and hypomorphic TP53 variants, whereas XAF1-E134* is markedly attenuated in this activity. We propose that cosegregation of XAF1-E134* and TP53-R337H mutations leads to a more aggressive cancer phenotype than TP53-R337H alone, with implications for genetic counseling and clinical management of hypomorphic TP53 mutant carriers.
BackgroundCXCL12 is a chemokine that is constitutively expressed in many organs and tissues. CXCL12 promoter hypermethylation has been detected in primary breast tumours and contributes to their metastatic potential. It has been shown that the oestrogen receptor α (ESR1) gene can also be silenced by DNA methylation. In this study, we used methylation-specific PCR (MSP) to analyse the methylation status in two regions of the CXCL12 promoter and ESR1 in tumour cell lines and in primary breast tumour samples, and correlated our results with clinicopathological data.MethodsFirst, we analysed CXCL12 expression in breast tumour cell lines by RT-PCR. We also used 5-aza-2'-deoxycytidine (5-aza-CdR) treatment and DNA bisulphite sequencing to study the promoter methylation for a specific region of CXCL12 in breast tumour cell lines. We evaluated CXCL12 and ESR1 methylation in primary tumour samples by methylation-specific PCR (MSP). Finally, promoter hypermethylation of these genes was analysed using Fisher's exact test and correlated with clinicopathological data using the Chi square test, Kaplan-Meier survival analysis and Cox regression analysis.ResultsCXCL12 promoter hypermethylation in the first region (island 2) and second region (island 4) was correlated with lack of expression of the gene in tumour cell lines. In the primary tumours, island 2 was hypermethylated in 14.5% of the samples and island 4 was hypermethylated in 54% of the samples. The ESR1 promoter was hypermethylated in 41% of breast tumour samples. In addition, the levels of ERα protein expression diminished with increased frequency of ESR1 methylation (p < 0.0001). This study also demonstrated that CXCL12 island 4 and ESR1 methylation occur simultaneously at a high frequency (p = 0.0220).ConclusionsThis is the first study showing a simultaneous involvement of epigenetic regulation for both CXCL12 and ESR1 genes in Brazilian women. The methylation status of both genes was significantly correlated with histologically advanced disease, the presence of metastases and death. Therefore, the methylation pattern of these genes could be used as a molecular marker for the prediction of breast cancer outcome.
MicroRNAs derived from extracellular vesicles (EV-miRNAs) are circulating miRNAs considered as potential new diagnostic markers for cancer that can be easily detected in liquid biopsies. In this study, we performed RNA sequencing analysis as a screening strategy to identify EV-miRNAs derived from serum of clinically well-annotated breast cancer (BC) patients from the south of Brazil. EVs from three groups of samples (healthy controls (CT), luminal A (LA), and triple-negative (TNBC)) were isolated from serum using a precipitation method and analyzed by RNA-seq (screening phase). Subsequently, four EV-miRNAs (miR-142-5p, miR-150-5p, miR-320a, and miR-4433b-5p) were selected to be quantified by quantitative real-time PCR (RT-qPCR) in individual samples (test phase). A panel composed of miR-142-5p, miR-320a, and miR-4433b-5p distinguished BC patients from CT with an area under the curve (AUC) of 0.8387 (93.33% sensitivity, 68.75% specificity). The combination of miR-142-5p and miR-320a distinguished LA patients from CT with an AUC of 0.9410 (100% sensitivity, 93.80% specificity). Interestingly, decreased expression of miR-142-5p and miR-150-5p were significantly associated with more advanced tumor grades (grade III), while the decreased expression of miR-142-5p and miR-320a was associated with a larger tumor size. These results provide insights into the potential application of EVs-miRNAs from serum as novel specific markers for early diagnosis of BC.
ABSTRACT. Changes in the expression of the protein disulfide isomerase genes PDIA3 and PDIA6 may increase endoplasmic reticulum stress, leading to cellular instability and neoplasia. We evaluated the expression of PDIA3 and PDIA6 in invasive ductal carcinomas. Using reverse transcription-quantitative polymerase chain reaction, we compared the mRNA expression level in 45 samples of invasive ductal carcinoma with that in normal breast samples. Increased expression of the PDIA3 gene in carcinomas (P = 0.0009) was observed. In addition, PDIA3 expression was increased in tumors with lymph node metastasis (P = 0.009) and with grade III (P < 0.02). The PDIA6 gene showed higher expression levels in the presence of lymph node metastasis (U = 99.00, P = 0.0476) and lower expression for negative hormone receptors status (P = 0.0351). Our results suggest that alterations in PDIA3/6 expression 6961 PDIA3 and PDIA6 gene expression in ductal breast cancer ©FUNPEC-RP www.funpecrp.com.br Genetics and Molecular Research 14 (2): 6960-6967 (2015) levels may be involved in the breast carcinogenic process and should be further investigated as a marker of aggressiveness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.