Journal of High Energy Physics 2015.2 (2015): 043 reproduced by permission of Scuola Internazionale Superiore di Studi Avanzati (SISSA)We describe a new set of gauge configurations generated within the CLS effort. These ensembles have N f = 2 + 1 flavors of non-perturbatively improved Wilson fermions in the sea with the L ̈uscher-Weisz action used for the gluons. Open boundary conditions in time are used to address the problem of topological freezing at small lattice spacings and twisted-mass reweighting for improved stability of the simulations. We give the bare parameters at which the ensembles have been generated and how these parameters have been chosen. Details of the algorithmic setup and its performance are presented as well as measurements of the pion and kaon masses alongside the scale parameter t 0M.B., P.K., T.K. and S.S. are supported by the Deutsche Forschungsgemeinschaft (DFG) in the SFB/TR 09 “Computational Particle Physics”. G.P.E. acknowledges partial support by the MIUR-PRIN contract 20093BMNNPR and G.H. acknowledges support by the the Spanish MINECO through the Ram ́on y Cajal Programme and through the project FPA2012-31686 and by the Centro de excelencia Severo Ochoa Program SEV- 2012-0249. G.H. and H.H. acknowledge the support from the DFG in the SFB 1044. M.P. acknowledges partial support by the MIUR-PRIN contract 2010YJ2NYW and by the INFN SUMA project. E.E.S, J.S., and W.S. are supported by the SFB/TRR-55 “Hadron Physics from Lattice QCD” by the DFG. E.E.S. also acknowledges support from the EU grant PIRG07-GA-2010-26836
We have simulated QCD using 2 þ 1 flavors of domain wall quarks and the Iwasaki gauge action on a ð2:74 fmÞ 3 volume with an inverse lattice scale of a À1 ¼ 1:729ð28Þ GeV. The up and down (light) quarks are degenerate in our calculations and we have used four values for the ratio of light quark masses to the strange (heavy) quark mass in our simulations: 0.217, 0.350, 0.617, and 0.884. We have measured pseudoscalar meson masses and decay constants, the kaon bag parameter B K , and vector meson couplings. We have used SU(2) chiral perturbation theory, which assumes only the up and down quark masses are small, and SU(3) chiral perturbation theory to extrapolate to the physical values for the light quark masses. While next-to-leading order formulas from both approaches fit our data for light quarks, we find the higher-order corrections for SU(3) very large, making such fits unreliable. We also find that SU(3) does not fit our data when the quark masses are near the physical strange quark mass. Thus, we rely on SU(2) chiral perturbation theory for accurate results. We use the masses of the baryon, and the and K mesons to set the lattice scale and determine the quark masses. We then find f ¼ 124:1ð3:6Þ stat  ð6:9Þ syst MeV, f K ¼ 149:6ð3:6Þ stat ð6:3Þ syst MeV, and f K =f ¼ 1:205ð0:018Þ stat ð0:062Þ syst . Using nonperturbative renormalization to relate lattice regularized quark masses to regularization independent momentum scheme masses, and perturbation theory to relate these to MS, we find m MS ud ð2 GeVÞ ¼ 3:72ð0:16Þ stat ð0:33Þ ren ð0:18Þ syst MeV, m MS s ð2 GeVÞ ¼ 107:3ð4:4Þ stat ð9:7Þ ren ð4:9Þ syst MeV, and mud : ms ¼ 1:28:8ð0:4Þ stat ð1:6Þ syst . For the kaon bag parameter, we find B MS K ð2 GeVÞ ¼ 0:524ð0:010Þ stat ð0:013Þ ren  ð0:025Þ syst . Finally, for the ratios of the couplings of the vector mesons to the vector and tensor currents (f V and f T V , respectively) in the MS scheme at 2 GeV we obtain f T =f ¼ 0:687ð27Þ; f T K à =f K à ¼ 0:712ð12Þ, and f T =f ¼ 0:750ð8Þ.
We present physical results obtained from simulations using 2+1 flavors of domain wall quarks and the Iwasaki gauge action at two values of the lattice spacing a, (a −1 = 1.73 (3) GeV and a −1 = 2.28 (3) GeV). On the coarser lattice, with 24 3 × 64 × 16 points (where the 16 corresponds to L s , the extent of the 5 th dimension inherent in the domain wall fermion (DWF) formulation
In the past decade, one of the major challenges of particle physics has been to gain an in-depth understanding of the role of quark flavor. In this time frame, measurements and the theoretical interpretation of their results have advanced tremendously. A much broader understanding of flavor particles has been achieved; apart from their masses and quantum numbers, there now exist detailed measurements of the characteristics of their interactions allowing stringent tests of Standard Model predictions. Among the most interesting phenomena of flavor physics is the violation of the CP symmetry that has been subtle and difficult to explore. In the past, observations of CP violation were confined to neutral K mesons, but since the early 1990s, a large number of CP-violating processes have been studied in detail in neutral B mesons. In parallel, measurements of the couplings of the heavy quarks and the dynamics for their decays in large samples of K, D, and B mesons have been greatly improved in accuracy and the results are being used as probes in the search for deviations from the Standard Model. In the near future, there will be a transition from the current to a new generation of experiments; thus a review of the status of quark flavor physics is timely. This report is the result of the work of physicists attending the 5th CKM workshop, hosted by the University of Rome "La Sapienza", September 9-13, 2008. It summarizes the results of the current generation of experiments that are about to be completed and it confronts these results with the theoretical understanding of the field which has greatly improved in the past decade. (C) 2010 Elsevier B.V. All rights reserved
The phase structure of zero temperature twisted mass lattice QCD is investigated. We find strong metastabilities in the plaquette observable when the untwisted quark mass assumes positive or negative values. We provide interpretations of this phenomenon in terms of chiral symmetry breaking and the effective potential model of Sharpe and Singleton.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.