Owing to the increasing development of nanotechnology, there is a need to assess how engineered nanomaterials can interact with living cells. The main purpose of the present study was to assess whether metal cobalt nanoparticles (CoNP 100-500 nm) are genotoxic compared to cobalt ions (Co(2+)). Uptake experiments were carried out by incubating peripheral blood leukocytes (PBLs) with (57)Co(2+) (added to stable Co(2+) 10(-2) M to obtain concentrations in the range of 10(-5) to 10(-4) M) or with (60)CoNP for 24 and 48 h. Whereas intracellular Co(2+) showed slight or no variations over the baseline levels, CoNP were taken up efficiently leading to intracellular CoNP concentrations of 485 +/- 106.1 and 970 +/- 99 fg per cell after 24 and 48 h, respectively. The genotoxicity end points considered in this study were the frequency of binucleated micronucleated (BNMN) cells and the percentage of tail DNA (% Tail DNA) fragmentation by means of the comet assay. Genotoxic effects were evaluated by incubating PBLs of three healthy donors with subtoxic concentrations (10(-5) to 8 x 10(-5)M) of Co(2+) in the form of cobalt chloride, CoNP and 'washed' CoNP, the latter to exclude any interference by Co(2+). On a group basis, Co(2+) induced a clear trend in the increase of the BNMN frequency, whereas CoNP showed only minor changes. Moreover, we observed a high variability among donors in the induction of micronuclei. The comet assay showed a statistically significant dose-related increase in % Tail DNA for CoNP (P < 0,001), whereas Co(2+) did not induce significant changes over control values. These findings suggest that nanosized Co can be internalized by human leukocytes and can interact with DNA leading to the observed genotoxic effects, which are, however, modulated both by donor's characteristics and/or by Co(2+) release.
Nanomaterials (NMs) display many unique and useful physico-chemical properties. However, reliable approaches are needed for risk assessment of NMs. The present study was performed in the FP7-MARINA project, with the objective to identify and evaluate in vitro test methods for toxicity assessment in order to facilitate the development of an intelligent testing strategy (ITS). Six representative oxide NMs provided by the EC-JRC Nanomaterials Repository were tested in nine laboratories. The in vitro toxicity of NMs was evaluated in 12 cellular models representing 6 different target organs/systems (immune system, respiratory system, gastrointestinal system, reproductive organs, kidney and embryonic tissues). The toxicity assessment was conducted using 10 different assays for cytotoxicity, embryotoxicity, epithelial integrity, cytokine secretion and oxidative stress. Thorough physico-chemical characterization was performed for all tested NMs. Commercially relevant NMs with different physico-chemical properties were selected: two TiO2 NMs with different surface chemistry – hydrophilic (NM-103) and hydrophobic (NM-104), two forms of ZnO – uncoated (NM-110) and coated with triethoxycapryl silane (NM-111) and two SiO2 NMs produced by two different manufacturing techniques – precipitated (NM-200) and pyrogenic (NM-203). Cell specific toxicity effects of all NMs were observed; macrophages were the most sensitive cell type after short-term exposures (24-72h) (ZnO>SiO2>TiO2). Longer term exposure (7 to 21 days) significantly affected the cell barrier integrity in the presence of ZnO, but not TiO2 and SiO2, while the embryonic stem cell test (EST) classified the TiO2 NMs as potentially ‘weak-embryotoxic’ and ZnO and SiO2 NMs as ‘non-embryotoxic’. A hazard ranking could be established for the representative NMs tested (ZnO NM-110 > ZnO NM-111 > SiO2 NM-203 > SiO2 NM-200 > TiO2 NM-104 > TiO2 NM-103). This ranking was different in the case of embryonic tissues, for which TiO2 displayed higher toxicity compared with ZnO and SiO2. Importantly, the in vitro methodology applied could identify cell- and NM-specific responses, with a low variability observed between different test assays. Overall, this testing approach, based on a battery of cellular systems and test assays, complemented by an exhaustive physico-chemical characterization of NMs, could be deployed for the development of an ITS suitable for risk assessment of NMs. This study also provides a rich source of data for modeling of NM effects.
Our experience indicates that one-shot dilation is feasible in the majority of patients. It is as safe and effective as the technique regarded today as the gold standard but less time consuming and less expensive. These encouraging results should be confirmed by further studies.
We formulated a harmonized definition of occupational burnout concept and experts from 29 countries consensually approved it. Official medical vocabulary should integrate this concept and its definition. This will reduce the semantic confusion associated with this concept, improve the quality of evidence on this outcome, and stimulate the research on diagnostic standards, paramount for treatment and prevention of occupational burnout.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.