Deregulation of the
transcriptional repressor BCL6 enables tumorigenesis
of germinal center B-cells, and hence BCL6 has been proposed as a
therapeutic target for the treatment of diffuse large B-cell lymphoma
(DLBCL). Herein we report the discovery of a series of benzimidazolone
inhibitors of the protein–protein interaction between BCL6
and its co-repressors. A subset of these inhibitors were found to
cause rapid degradation of BCL6, and optimization of pharmacokinetic
properties led to the discovery of 5-((5-chloro-2-((3R,5S)-4,4-difluoro-3,5-dimethylpiperidin-1-yl)pyrimidin-4-yl)amino)-3-(3-hydroxy-3-methylbutyl)-1-methyl-1,3-dihydro-2H-benzo[d]imidazol-2-one (CCT369260),
which reduces BCL6 levels in a lymphoma xenograft mouse model following
oral dosing.
Androgens and oestrogens have been implicated in prostatic carcinogenesis and tumour progression. Although the actions of androgens have been studied extensively, the mechanisms underlying oestrogen signalling in prostate cancer are not fully understood. In the present study, we analyzed the effect of androgens and oestrogens on the expression of anterior gradient 2 (AGR2) and anterior gradient 3 (AGR3), comprising two highlyrelated genes encoding secretory proteins that are expressed in prostate cancer and one of which (AGR2) has been associated with tumour metastasis. Quantitative reverse-transcriptase PCR and western blot analysis showed androgen induction of AGR2 and AGR3 in three androgen receptor positive cell lines, starting at concentrations of 0.1 nM. Both AGR genes were also transcriptionally activated by ! 5 nM oestradiol but not by isotype selective or nonselective oestrogen receptor agonists in DUCaP cells that harbour a high-level of wild-type androgen receptor. A functional androgen receptor but not oestrogen receptor turned out to be required for both androgen and oestrogen regulation. This pattern of androgen and oestrogen regulation was confirmed in VCaP cells and was also observed for FKBP5, a well-characterized androgen-regulated gene. Genome-wide chromatin-immunoprecipitation studies coupled with deep sequencing identified androgen receptor binding sites localized in the distal promoter and intron regions of the AGR2 and AGR3 genes, respectively. The androgen responsiveness of these enhancers was verified by luciferase reporter gene assays and site-directed mutagenesis analysis. Androgen treatment also induced p300 and RNA Pol II recruitment to androgen receptor enhancers of AGR2 and initiated local chromatin remodelling and the formation of RNA Pol II-containing androgen receptor transcription complexes.
Residues in the histone substrate binding sites that differ between the KDM4 and KDM5 subfamilies were identified. Subsequently, a C8-substituted pyrido[3,4-
d
]pyrimidin-4(3
H
)-one series was designed to rationally exploit these residue differences between the histone substrate binding sites in order to improve affinity for the KDM4-subfamily over KDM5-subfamily enzymes. In particular, residues E169 and V313 (KDM4A numbering) were targeted. Additionally, conformational restriction of the flexible pyridopyrimidinone C8-substituent was investigated. These approaches yielded potent and cell-penetrant dual KDM4/5-subfamily inhibitors including
19a
(KDM4A and KDM5B Ki = 0.004 and 0.007 μM, respectively). Compound cellular profiling in two orthogonal target engagement assays revealed a significant reduction from biochemical to cell-based activity across multiple analogues; this decrease was shown to be consistent with 2OG competition, and suggests that sub-nanomolar biochemical potency will be required with C8-substituted pyrido[3,4-
d
]pyrimidin-4(3
H
)-one compounds to achieve sub-micromolar target inhibition in cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.