SummaryThe archaeological documentation of the development of sedentary farming societies in Anatolia is not yet mirrored by a genetic understanding of the human populations involved, in contrast to the spread of farming in Europe [1, 2, 3]. Sedentary farming communities emerged in parts of the Fertile Crescent during the tenth millennium and early ninth millennium calibrated (cal) BC and had appeared in central Anatolia by 8300 cal BC [4]. Farming spread into west Anatolia by the early seventh millennium cal BC and quasi-synchronously into Europe, although the timing and process of this movement remain unclear. Using genome sequence data that we generated from nine central Anatolian Neolithic individuals, we studied the transition period from early Aceramic (Pre-Pottery) to the later Pottery Neolithic, when farming expanded west of the Fertile Crescent. We find that genetic diversity in the earliest farmers was conspicuously low, on a par with European foraging groups. With the advent of the Pottery Neolithic, genetic variation within societies reached levels later found in early European farmers. Our results confirm that the earliest Neolithic central Anatolians belonged to the same gene pool as the first Neolithic migrants spreading into Europe. Further, genetic affinities between later Anatolian farmers and fourth to third millennium BC Chalcolithic south Europeans suggest an additional wave of Anatolian migrants, after the initial Neolithic spread but before the Yamnaya-related migrations. We propose that the earliest farming societies demographically resembled foragers and that only after regional gene flow and rising heterogeneity did the farming population expansions into Europe occur.
In the present study, to contribute to the understanding of the evolutionary history of sheep, the mitochondrial (mt) DNA polymorphisms occurring in modern Turkish native domestic (n = 628), modern wild (Ovis gmelinii anatolica) (n = 30) and ancient domestic sheep from Oylum Höyük in Kilis (n = 33) were examined comparatively with the accumulated data in the literature. The lengths (75 bp/76 bp) of the second and subsequent repeat units of the mtDNA control region (CR) sequences differentiated the five haplogroups (HPGs) observed in the domestic sheep into two genetic clusters as was already implied by other mtDNA markers: the first cluster being composed of HPGs A, B, D and the second cluster harboring HPGs C, E.To manifest genetic relatedness between wild Ovis gmelinii and domestic sheep haplogroups, their partial cytochrome B sequences were examined together on a median-joining network. The two parallel but wider aforementioned clusters were observed also on the network of Ovis gmelenii individuals, within which domestic haplogroups were embedded. The Ovis gmelinii wilds of the present day appeared to be distributed on two partially overlapping geographic areas parallel to the genetic clusters that they belong to (the first cluster being in the western part of the overall distribution). Thus, the analyses suggested that the domestic sheep may be the products of two maternally distinct ancestral Ovis gmelinii populations.Furthermore, Ovis gmelinii anatolica individuals exhibited a haplotype of HPG A (n = 22) and another haplotype (n = 8) from the second cluster which was not observed among the modern domestic sheep. HPG E, with the newly observed members (n = 11), showed signs of expansion. Studies of ancient and modern mtDNA suggest that HPG C frequency increased in the Southeast Anatolia from 6% to 22% some time after the beginning of the Hellenistic period, 500 years Before Common Era (BCE).
The great ethnolinguistic diversity found today in mainland Southeast Asia (MSEA) reflects multiple migration waves of people in the past. Maritime trading between MSEA and India was established at the latest 300 BCE, and the formation of early states in Southeast Asia during the first millennium CE was strongly influenced by Indian culture, a cultural influence that is still prominent today. Several ancient Indian-influenced states were located in present-day Thailand, and various populations in the country are likely to be descendants of people from those states. To systematically explore Indian genetic heritage in MSEA populations, we generated genome-wide SNP data (using the Affymetrix Human Origins array) for 119 present-day individuals belonging to 10 ethnic groups from Thailand and co-analyzed them with published data using PCA, ADMIXTURE, and methods relying on f-statistics and on autosomal haplotypes. We found low levels of South Asian admixture in various MSEA populations for whom there is evidence of historical connections with the ancient Indian-influenced states but failed to find this genetic component in present-day hunter-gatherer groups and relatively isolated groups from the highlands of Northern Thailand. The results suggest that migration of Indian populations to MSEA may have been responsible for the spread of Indian culture in the region. Our results also support close genetic affinity between Kra-Dai-speaking (also known as Tai-Kadai) and Austronesian-speaking populations, which fits a linguistic hypothesis suggesting cladality of the two language families.
The great ethnolinguistic diversity found today in mainland Southeast Asia (MSEA) reflects multiple migration waves of people in the past. Deeply divergent East Eurasian hunter-gatherers were the first anatomically modern human population known to migrate to the region. Agriculturalists from South China migrated to the region and admixed with the local hunter-gatherers during the Neolithic period. During the Bronze and Iron Ages, the genetic makeup of people in MSEA changed again, indicating an additional influx of populations from South China. Maritime trading between MSEA and India was established at the latest 300 BCE, and the formation of early states in Southeast Asia during the first millennium CE was strongly influenced by Indian culture, and this cultural influence is still prominent today. Several ancient Indian-influenced states were located in present-day Thailand, and various populations in the country are likely to be descendants of people from those states. To systematically explore Indian genetic heritage in MSEA, we generated genome-wide SNP data (the HumanOrigins array) for 119 present-day individuals belonging to 10 ethnic groups from Thailand and co-analyzed them with published data from MSEA using the PCA, ADMIXTURE, f3-statistics, qpAdm, and qpGraph methods. We found South Asian low-level admixture in various MSEA populations which are probably descendants of people from the ancient Indian-influenced states, but failed to find a South Asian genetic component in present-day hunter-gatherer groups and relatively isolated groups from highlands in Northern Thailand. Our results also support close genetic affinity between Kra-Dai-speaking (also known as Tai-Kadai) and Austronesian-speaking populations, which fits a linguistic hypothesis suggesting cladality of the two language families.Author SummaryMainland Southeast Asia is a region with great ethnolinguistic diversity and complex population history. We studied genetic population history of present-day mainland Southeast Asian populations using genome-wide SNP data (the HumanOrigins array). We generated new data for 10 present-day ethnic groups from Thailand, which we further combined with published data from mainland and island Southeast Asians and worldwide populations. We revealed South Asian genetic admixture in various mainland Southeast Asian ethnic groups which are highly influenced by Indian culture, but failed to find it in groups who remained culturally isolated until recently. Our finding suggests that a massive migration of Indian people in the past was responsible for the spread of Indian culture in mainland Southeast Asia. We also found support for a close genetic affinity between Kra-Dai- and Austronesianspeaking populations, which fits a linguistic hypothesis suggesting cladality of the two language families.
Upward Sun River 1, an individual from a unique burial of the Denali tradition in Alaska (11500 calBP), is considered a type representative of Ancient Beringians who split from other First Americans 22000-18000 calBP in Beringia. Using a new admixture graph model-comparison approach resistant to overfitting, we show that Ancient Beringians do not form the deepest American lineage, but instead harbor ancestry from a lineage more closely related to northern North Americans than to southern North Americans. Ancient Beringians also harbor substantial admixture from a lineage that did not contribute to other Native Americans: Amur River Basin populations represented by a newly reported site in northeastern China. Relying on these results, we propose a new model for the genomic formation of First American ancestors in Asia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.