Mg2+ shares a distinctive relationship with RNA, playing important and specific roles in the folding and function of essentially all large RNAs. Here we use theory and experiment to evaluate Fe2+ in the absence of free oxygen as a replacement for Mg2+ in RNA folding and catalysis. We describe both quantum mechanical calculations and experiments that suggest that the roles of Mg2+ in RNA folding and function can indeed be served by Fe2+. The results of quantum mechanical calculations show that the geometry of coordination of Fe2+ by RNA phosphates is similar to that of Mg2+. Chemical footprinting experiments suggest that the conformation of the Tetrahymena thermophila Group I intron P4–P6 domain RNA is conserved between complexes with Fe2+ or Mg2+. The catalytic activities of both the L1 ribozyme ligase, obtained previously by in vitro selection in the presence of Mg2+, and the hammerhead ribozyme are enhanced in the presence of Fe2+ compared to Mg2+. All chemical footprinting and ribozyme assays in the presence of Fe2+ were performed under anaerobic conditions. The primary motivation of this work is to understand RNA in plausible early earth conditions. Life originated during the early Archean Eon, characterized by a non-oxidative atmosphere and abundant soluble Fe2+. The combined biochemical and paleogeological data are consistent with a role for Fe2+ in an RNA World. RNA and Fe2+ could, in principle, support an array of RNA structures and catalytic functions more diverse than RNA with Mg2+ alone.
Ancient components of the ribosome, inferred from a consensus of previous work, were constructed in silico, in vitro and in vivo. The resulting model of the ancestral ribosome presented here incorporates ∼20% of the extant 23S rRNA and fragments of five ribosomal proteins. We test hypotheses that ancestral rRNA can: (i) assume canonical 23S rRNA-like secondary structure, (ii) assume canonical tertiary structure and (iii) form native complexes with ribosomal protein fragments. Footprinting experiments support formation of predicted secondary and tertiary structure. Gel shift, spectroscopic and yeast three-hybrid assays show specific interactions between ancestral rRNA and ribosomal protein fragments, independent of other, more recent, components of the ribosome. This robustness suggests that the catalytic core of the ribosome is an ancient construct that has survived billions of years of evolution without major changes in structure. Collectively, the data here support a model in which ancestors of the large and small subunits originated and evolved independently of each other, with autonomous functionalities.
Mg(2+) is essential for RNA folding and catalysis. However, for the first 1.5 billion years of life on Earth RNA inhabited an anoxic Earth with abundant and benign Fe(2+). We hypothesize that Fe(2+) was an RNA cofactor when iron was abundant, and was substantially replaced by Mg(2+) during a period known as the 'great oxidation', brought on by photosynthesis. Here, we demonstrate that reversing this putative metal substitution in an anoxic environment, by removing Mg(2+) and replacing it with Fe(2+), expands the catalytic repertoire of RNA. Fe(2+) can confer on some RNAs a previously uncharacterized ability to catalyse single-electron transfer. We propose that RNA function, in analogy with protein function, can be understood fully only in the context of association with a range of possible metals. The catalysis of electron transfer, requisite for metabolic activity, may have been attenuated in RNA by photosynthesis and the rise of O2.
The three-dimensional structure of the ribosomal large subunit (LSU) reveals a single morphological element, although the 23S rRNA is contained in six secondary structure domains. Based upon maps of inter-and intra-domain interactions and proposed evolutionary pathways of development, we hypothesize that Domain III is a truly independent structural domain of the LSU. Domain III is primarily stabilized by intra-domain interactions, negligibly perturbed by inter-domain interactions, and is not penetrated by ribosomal proteins or other rRNA. We have probed the structure of Domain III rRNA alone and when contained within the intact 23S rRNA using SHAPE (selective 29-hydroxyl acylation analyzed by primer extension), in the absence and presence of magnesium. The combined results support the hypothesis that Domain III alone folds to a near-native state with secondary structure, intra-domain tertiary interactions, and inter-domain interactions that are independent of whether or not it is embedded in the intact 23S rRNA or within the LSU. The data presented support previous suggestions that Domain III was added relatively late in ribosomal evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.