International audienceTo gain a better insight of the hydrogeology and the location of the main tectonic faults of Stromboli volcano in Italy, we collected electrical resistivity measurements, soil CO2 concentrations, temperature and self-potential measurements along two profiles. These two profiles started at the village of Ginostra in the southwest part of the island. The first profile (4.8 km in length) ended up at the village of Scari in the north east part of the volcano and the second one (3.5 km in length) at Forgia Vecchia beach, in the eastern part of the island. These data were used to provide insights regarding the position of shallow aquifers and the extension of the hydrothermal system. This large-scale study is complemented by two high-resolution studies, one at the Pizzo area (near the active vents) and one at Rina Grande where flank collapse areas can be observed. The Pizzo corresponds to one of the main degassing structure of the hydrothermal system. The main degassing area is localized along a higher permeability area corresponding to the head of the gliding plane of the Rina Grande sector collapse. We found that the self-potential data reveal the position of an aquifer above the villages of Scari and San Vincenzo. We provide an estimate of the depth of this aquifer from these data. The lateral extension of the hydrothermal system (resistivity ∼15-60 ohm m) is broader than anticipated extending in the direction of the villages of Scari and San Vincenzo (in agreement with temperature data recorded in shallow wells). The lateral extension of the hydrothermal system reaches the lower third of the Rina Grande sector collapse area in the eastern part of the island. The hydrothermal body in this area is blocked by an old collapse boundary. This position of the hydrothermal body is consistent with low values of the magnetization (<2.5 A m−1) from previously published work. The presence of the hydrothermal body below Rina Grande raises questions about the mechanical stability of this flank of the edifice
On March 15th 2007 a paroxysmal explosion occurred at the Stromboli volcano. This event generated a large amount of products, mostly lithic blocks, some of which impacted the ground as far as down to 200 m a.s.l., about 1.5 km far away from the active vents.Two days after the explosion, a new vapour emission was discovered on the north-eastern flank of the volcanic edifice, at 560 m a.s.l., just above the area called "Nel Cannestra". This new vapour emission was due to a block impact. In order to investigate the block impact area to understand the appearance of the vapour emission, we conducted on May 2008 a multidisciplinary study involving Electrical Resistivity Tomography (ERT), Ground Penetrating Radar (GPR), Self-Potential (SP), CO(2) soil diffuse degassing and soil temperature surveys. This complementary data set revealed the presence of an anomalous conductive body, probably related to a shallow hydrothermal level, at about 10-15 m depth, more or less parallel to the topography. It is the first time that such a hydrothermal fluid flow, with a temperature close to the water boiling point (76 degrees C) has been evidenced at Stromboli at this low elevation on the flank of the edifice. The ERT results suggest a possible link between (1) the main central hydrothermal system of Stromboli, located just above the plumbing system feeding the active vents, with a maximum of subsurface soil temperature close to 90 degrees C and limited by the NeoStromboli summit crater boundary and (2) the investigated area of Nel Cannestra, at similar to 500 m a.s.l., a buried eruptive fissure active 9 ka ago. In parallel, SP and CO(2) soil diffuse degassing measurements suggest in this sector at slightly lower elevation from the block impact crater a magmatic and hydrothermal fluid rising system along the N41 degrees regional fault. A complementary ERT profile, on May 2009, carried out from the NeoStromboli crater boundary down to the block impact crater displayed a flank fluid flow apparently connected to a deeper system. The concept of shallow hydrothermal level have been compared to similar ERT results recently obtained on Mount Etna and La Fossa cone of Vulcano. This information needs to be taken into account in general fluid flow models on volcanoes. In particular, peripheral thermal waters (as those bordering the northeastern coast of Stromboli) could be contaminated by hydrothermal and magmatic fluids coming from regional faults but also from the summit. (C) 2010 Elsevier B.V. All rights reserved
International audienceAfter a drastic decline in 1983, hydrothermal activity at La Soufrière lava dome (Guadeloupe, Lesser Antilles) has been progressively increasing in the summit area since 1992, raising the threat of a renewed eruptive activity. To better constrain the geometry of the hydrothermal system, an extensive high-resolution self-potential survey was performed on the dome and three multi-method profiles combining electrical resistivity tomography, self-potential, ground thermometry and soil CO 2 diffuse degassing measurements were carried out to cover its southern periphery in January 2011. Results indicate that hydrothermal ascending flows are currently restricted to a proximal area including the dome and its very vicinity. The extension of hydrothermal alteration inferred from electrical resistivity tomography reflects the presence of a heat source just below the dome. A first-order correction of topography-related self-potential variations allows the identification of major hydrothermal fluid circulations pathways, as well as significant meteoric infiltration zones. Local shifting of hydrothermal fluids towards the dome periphery is favored by the presence of major axes. The regional La Ty fault appears as the major axis draining large volumes of hydrothermal and magmatic fluids. However hydrothermal activity remains confined inside a collapse structure surrounding the dome, that formed in the last 9000 years as a result of recurrent edifice collapses, the latest occurring at the onset of the 1530 AD eruption. The combination of these qualitative results with structural analysis leads to a synthetic model of magmatic and hydrothermal fluids circulation inside the dome, which may be useful for the assessment of potential hazards associated with a renewal of fluid pres-surization, and a possibly associated partial flank-failure
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.